Мегаобучалка Главная | О нас | Обратная связь


II. Энергетическое сырье



2019-08-14 142 Обсуждений (0)
II. Энергетическое сырье 0.00 из 5.00 0 оценок




 

После цепи замечательных открытий наступила пора решения сложнейших технических и технологических проблем. Нужно было в невиданных доселе масштабах добывать урановую руду, наладить металлургию нового важнейшего металла, из металла приготовить сплавы, стойкие к радиационным воздействиям и достаточно прочные, чтобы можно было готовить из них реакторные тепловыделяющие элементы (твэлы). А еще нужно было научиться разделять изотопы элемента №92, научиться работать с источниками радиоактивности, превосходящими во много раз естественную радиоактивность всего вещества нашей планеты, очищать облученный уран от осколков деления и вновь пускать его в дело...

Ниже и пойдет речь о решении этих инженерных проблем. Но прежде – о земных запасах элемента №92, его минералах и рудах.

Земной уран

До пуска первых ядерных реакторов урановые руды добывали в основном для извлечения из них радия. Мизерные количества урановых соединений использовали в некоторых красителях и катализаторах. Когда из элемента, не имеющего почти никакого промышленного значения, уран превратился в стратегическое сырье №1, началась настоящая охота за его рудами. Чуть ли не все уголки земного шара были обследованы па уран, благо свойства его соединений – радиоактивность и способность светиться в ультрафиолетовых лучах – сами подсказали принципы конструирования новых чувствительных поисковых приборов, обладающих к тому же достаточно высокой избирательностью.

Впрочем, еще до того, как открыли деление ядер урана нейтронами, было определено его содержание во многих горных породах, чтобы выяснить их абсолютный возраст. Оказалось, что средняя концентрация урана в земной коре довольно велика – 3·10–4%. Это значит, что урана на Земле больше, чем серебра, висмута, ртути...

В некоторых распространенных породах и минералах содержание урана значительно выше этой средней величины. Так, в тонне гранита – около 25 г элемента №92. Полная энергия этих 25 г эквивалентна теплосодержанию 125 т каменного угля. Поэтому (а еще потому, что во всем мире наблюдается устойчивая тенденция к использованию все более бедных урановых руд) можно полагать, что со временем гранит станут считать одним из видов минерального топлива.

Всего в относительно тонком, двадцатикилометровом, верхнем слое Земли заключено около 1014 т урана. Количество громадное, способное удовлетворить все энергетические потребности человечества на многие тысячелетия. Энергия этого урана оценивается астрономической цифрой – 2,36·1024 киловатт-часов. Это в миллионы раз больше, чем могут дать все разведанные и предполагаемые месторождения горючих ископаемых.

Подсчитано, что быстрое освобождение энергии урана, заключенного в земной коре, раскалило бы нашу планету до температуры в несколько тысяч градусов. К счастью, урановое тепло в толще Земли выделяется постепенно, по мере того как ядра урана и его дочерних продуктов проходят по длинной цепи радиоактивных превращений. О том, что этот процесс очень медленный, свидетельствуют периоды полураспада природных изотопов урана. Для урана-235 он равен 7·108 лет, для урана-238 – 4,51·109.

Как ни медленно выделяется урановое тепло, оно все-таки существенно подогревает Землю. Однако если бы в массе планеты концентрация урана была такой же, как в двадцатикилометровом верхнем слое, то температура Земли была бы намного выше существующей. Эти расчеты, подтвержденные прямыми измерениями (на больших глубинах вулканические породы беднее ураном), показывают, что по мере продвижения к центру Земли концентрация урана падает.

Минералы и руды

Несколько слов о минералах урана. Их известно много – около 200. Они разные по составу, происхождению и, конечно, далеко не все имеют промышленное значение. Минералы урана делят на первичные, образовавшиеся при формировании земной коры, и вторичные – те, что образовались на более поздних стадиях ее развития под действием тех или иных природных факторов.

Есть минералы урана окислы, есть силикаты, титанаты, тантало-ниобаты и т.д. Из первичных минералов-окислов наиболее известен настуран, он же урановая смолка или смоляная обманка. Обычно этому минералу приписывают формулу U3O8, но в действительности состав настурана переменен, и более точной представляется формула UO2,25. Обманкой этот минерал называют за переменчивость цвета: темно-серый, черный, зеленовато-черный... А смолкой – за то, что его зерна действительно похожи на капли застывшей смолы.

Из вторичных минералов распространен желто-зеленый отэнтит – гидратированный уранилфосфат кальция Ca(UO2)2(PO4)2 · 8H2O.

Не всякую породу, содержащую уран, считают рудой. Основной принцип классификации «руда – не руда» – процентное содержание урана в породе. Сегодня проходной балл 0,1%, но иногда и в наши дни бывает выгодно извлекать уран из более бедных руд. Критерий здесь – экономическая целесообразность. В Южной Африке, например, извлекают уран из руд, содержащих всего 0,01% U. Но наряду с ураном эти руды содержат золото.

Часто урану в минералах сопутствуют другие полезные элементы – титан, тантал, редкие земли. Поэтому естественно стремление к комплексной переработке урансодержащих руд. А поскольку сам уран – элемент рассеянный и основная масса его сосредоточена в породах, содержащих 0,0025% U и меньше, будущее элемента №92 связывают с бедными рудами.

Способов выделения урана из руд разработано великое множество. Причиной тому, с одной стороны, стратегическая важность элемента №92, с другой – разнообразие его природных форм. Но каков бы ни был метод, каково бы ни было сырье, любое урановое производство включает три стадии: предварительное концентрирование урановой руды, выщелачивание урана и получение достаточно чистых соединений урана осаждением, экстракцией или ионным обменом, Далее, в зависимости от назначения получаемого урана, следует обогащение продукта изотопом 235U или сразу же восстановление элементарного урана.

Обо всех этих стадиях мы расскажем подробнее, но прежде – об основах химии элемента №92, ибо любая технология основывается на своеобразии свойств элемента №92 и его соединений.

Третий из актиноидов

В таблице Менделеева, изданной в 30-х годах, уран занимал место в VI группе, и не без оснований: известно много соединений шестивалентного урана. Сейчас место урана – среди актиноидов, во втором «интерпериодическом узле» менделеевской таблицы, непосредственно под неодимом.

Уран не очень типичный актиноид, известно пять его валентных состояний – от 2+ до 6+. Некоторые соединения урана имеют характерную окраску. Так, растворы трехвалентного урана – красного цвета, четырехвалентного – зеленого, а шестивалентный уран – он существует в форме уранил-иона (UO2)2+ – окрашивает растворы в желтый цвет... Тот факт, что шестивалентный уран образует соединения со многими органическими комплексо-образователями, оказался очень важным для технологии извлечения элемента №92.

Характерно, что внешняя электронная оболочка ионов урана всегда заполнена целиком; валентные электроны находятся в предыдущем электронном слое, в подоболочке 5f.

Если сравнивать уран с другими элементами, то очевидно, что больше всего на него похож плутоний. Основное различие между ними – больший ионный радиус урана. Кроме того, плутоний наиболее устойчив в четырехвалентном состоянии, а уран – в шестивалентном. Это помогает разделить их, что очень важно: ядерное горючее плутоний-239 получают исключительно из урана, балластного с точки зрения энергетики урана-238. Плутоний образуется в массе урана, и их надо разделить!

Впрочем, раньше нужно получить эту самую массу урана, пройдя длинную технологическую цепочку, начинающуюся с руды. Как правило, многокомпонентной, бедной ураном руды.

Путь от руды до урана

Самая первая стадия уранового производства – концентрирование. Породу дробят и смешивают с водой. Тяжелые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжелые минералы. Вторичные минералы элемента №92 легче, в этом случае раньше оседает тяжелая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия – выщелачивание концентратов, перевод элемента №92 в раствор. На практике применяют кислотное и щелочное выщелачивание. Первое – дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке, уран находится в четырехвалентном состоянии, то этот способ неприменим: четырехвалентный уран в серной кислоте практически не растворяется. И либо нужно прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит. Слишком много кислоты приходится тратить на их растворение, и в этих случаях лучше воспользоваться едким натром.

Проблему выщелачивания урана из руд быстро и эффективно решает кислородная продувка. В нагретую до 150°C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

Как видим, проблем и сложностей на этой стадии производства немало, но все они чисто инженерные или экономические, разрешимые и большей частью разрешенные. Химические же сложности только начинаются, и, как говорится, это еще цветочки...

Ягодки начинаются на следующем этапе, когда из полученного раствора нужно избирательно выделить уран. Современные методы – экстракция и ионный обмен – позволили решить и эту проблему. Но сложностей здесь было много. Раствор содержит не только уран, но и другие катионы. Некоторые из них в определенных условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того пли иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши еще и тем, что позволяют достаточно полно извлекать уран из бедных растворов, в литре которых лишь десятые доли грамма элемента №92.

После этих операций уран переводят в твердое состояние – в один из окислов или в тетрафторид UF4. Но этот уран еще надо очистить от примесей с большим сечением захвата тепловых нейтронов – бора, кадмия, лития, редких земель. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Вот и приходится уже полученный технически чистый продукт еще раз растворять – на этот раз в азотной кислоте. Уранилнитрат UO2(NO3)2 при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO4 2 H2O) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO3, которую восстанавливают водородом до UO2.

Это вещество – предпоследнее на пути от руды к металлу. При температуре от 430 до 600°C оно реагирует с сухим фтористым водородом и превращается в тетрафторид UF4. Именно из этого соединения обычно получают металлический уран. Получают с помощью кальция или магния обычным восстановлением.

Таков путь к металлическому урану. Но нам придется еще раз возвратиться к стадии выщелачивания, ибо этой процедуре подвергаются не только концентраты урана, но и главные урановые изделия – отработавшие свое твэлы ядерных реакторов. Четверть века назад ядерные реакторы обычно называли атомными котлами, подчеркивая тем самым суть происходящих в них процессов: главное – это выделение энергии. Но если в обычных топках горючее полностью (или почти полностью) сгорает, то в ядерном реакторе все обстоит иначе. В рабочем цикле выгорает лишь незначительная доля урана: «протопить» реактор до полного выгорания ядерного горючего технически невозможно. Но в реакторе уран «зашлаковывается» продуктами деления; меньше в нем становится урана-235; цепная реакция неизбежно начинает глохнуть, и поддержать ее можно, только сменив твэлы. А в отработанных твэлах осталась еще большая часть ядерного горючего, и уран из них необходимо вновь пустить в дело.

Поэтому старые твэлы снимают и отправляют на переработку: растворяют их в кислотах и извлекают уран из раствора методом экстракции. Уран легко образует экстрагируемые комплексы и переходит в органическую фазу, а осколки деления, от которых нужно избавиться, остаются в водном растворе. Из органики выделяют уран практически теми же методами, как и при получении его из руды.

Следует отметить, что именно урановая промышленность СССР стала первым практически безотходным химическим производством. Проблемы утилизации, очистки, охраны окружающей среды решались одновременно с главными технологическими проблемами.

Металл

Чем плотнее упаковано ядерное горючее, тем быстрее достигаются критические размеры ядерного реактора, тем быстрее он может начать работать. Самое плотное урансодержащее вещество, конечно же, металлический уран. Поэтому твэлы современных ядерных реакторов делают из металлического урана. На заре атомного века реакторы загружали окисью урана. Металла не хватало несмотря на предпринятые чрезвычайные меры; не хватало его главным образом потому, что слишком сложной оказалась технология получения урановых слитков.

Металлический уран – материя капризная. Нагретый металл реагирует со всеми применяемыми в обычной металлургии тугоплавкими материалами, урановые порошки вступают в реакции почти со всеми составляющими атмосферы уже при комнатной температуре.

Современный аппарат для восстановления урана – это бесшовная стальная труба, футерованная окисью кальция; иначе материал трубы будет взаимодействовать с ураном. Трубу загружают смесью тетрафторида урана и магния (или кальция) и подогревают до 600°C. Затем включают электрический запал. Быстрая экзотермическая реакция восстановления протекает мгновенно. Реакционная смесь нагревается до высокой температуры и целиком плавится. Тяжелый жидкий уран (его температура плавления 1132°C) стекает на дно аппарата.

Аппарат охлаждается, начинается кристаллизация урана. Его атомы выстраиваются в строгом порядке, образуя кубическую решетку.

Первый фазовый переход происходит при 774°C; кристаллическая решетка остывающего металла становится тетрагональной. Когда температура слитка падает до 668°C, атомы вновь перестраивают свои ряды, располагаясь волнами в параллельных слоях. Плотность достигает максимума – 19,04 г/см3. Других изменений при понижении температуры со слитком не происходит.

«Волнистая» урановая структура делает слиток непрочным. Атомы отдельных слоев связаны между собой довольно надежно, зато связь между слоями заметно слабее; поэтому при комнатной температуре уран очень хрупок. Упрочить металл можно, сохранив высокотемпературную кубическую решетку. Такую решетку имеет сплав урана с молибденом. Именно поэтому молибден стал главным легирующим элементом в производстве металлического урана. Молибден придает урану и другое полезное качество. Как правило, в мощных реакторах на тепловых нейтронах (а именно такие реакторы распространены в наше время) топливные элементы охлаждают водой. При малейшем нарушении защитной оболочки блок из чистого урана под угрозой: уран разлагает воду, свободный водород вступает в реакцию – образуется гидрид урана H3U. Этот порошок осыпается и уносится водяным потоком – твэл разрушается. Картина совсем иная, если вместо чистого урана применен ураномолибденовый сплав. Такие сплавы устойчивы к действию воды и служат великолепным материалом для главных урановых изделий – твэлов атомных реакторов.



2019-08-14 142 Обсуждений (0)
II. Энергетическое сырье 0.00 из 5.00 0 оценок









Обсуждение в статье: II. Энергетическое сырье

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (142)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)