Мегаобучалка Главная | О нас | Обратная связь


Лазерные легирование, наплавка, маркировка, гравировка



2019-10-11 373 Обсуждений (0)
Лазерные легирование, наплавка, маркировка, гравировка 0.00 из 5.00 0 оценок




Лазерное легирование отличается от обычного лазерного упрочнения тем, что повышение твердости и других эксплуатационных показателей достигается не только за счет структурных и фазовых превращений в зоне лазерного воздействия, но и путем создания нового сплава с отличным от матричного материала химическим составом. Тем не менее в основе этого нового сплава лежит матричный материал.

В отличие от легирования при лазерной наплавке матричный материал может находиться лишь в небольшом слое между матрицей и направленным слоем, который служит связующей средой. Наплавленный же слой существенно отличается от матричного материала.

Эти виды поверхностной лазерной обработки очень перспективны вследствие роста дефицита чистых металлов типа W, Mo, NiCr, Co. V. Острой необходимости снижения расхода высоколегированных сталей и в связи с этим увеличения надежности и долговечности изделий из менее дефицитных конструкционных материалов.

Процессы локального легирования и наплавки реализуются с помощью как импульсного, так и непрерывного излучения по тем же схемам, что и обычное лазерное упрочнение. Технологические закономерности процесса, помимо ранее рассмотренных, зависят также от способа подачи в зону обработки легирующего состава, вида легирующего элемента (элементов), свойств матричного материала.

Существуют следующие способы подачи легирующего элемента (среды) в зону лазерного воздействия:

* нанесение легирующего состава в виде порошка на обрабатываемую поверхность;

* обмазка поверхности специальным легирующим составом;

* легирование в жидкости (жидкой легирующей среде);

* накатывание фольги из легирующего материала на обрабатываемую поверхность;

* легирование в газообразной легирующей среде;

* удержание ферромагнитных легирующих элементов на матричной поверхности магнитным полем;

* электроискровое нанесение легирующего состава;

* плазменное нанесение покрытия;

* детонационное нанесение легирующего состава;

* электролитическое осаждение легирующего покрытия;

* подача легирующего состава в зону обработки синхронно с лазерным излучением.

Каждый из этих способов имеет свои достоинства и недостатки, которые определяют целесообразность его использования в конкретном случае.

Размеры легированной зоны зависят в основном от энергетических параметров излучения и толщины покрытия из легирующего материала. Как правило, легирование импульсным излучением обеспечивает меньшие размеры легированной зоны, чем при обработке непрерывным излучением. В частности, если при импульсной обработке глубина зоны достигает 0,3—0,7 мм, то применение непрерывного излучения мощных СO2-лазеров позволяет увеличить глубины зоны до 3 мм.

На степень упрочнения влияет как вид легирующего элемента, так и состав матричного материала. Например, при легировании, алюминиевого сплава AЛ 25 железом, никелем и марганцем достигается различная

Микротвердость:

Легирующий элемент П,. МПа

Mn 2180

Xi 2200

Fe . . 3500

После термообработки 1000

Без термообработки 850

Максимальная концентрация К2 элемента в облученной зоне может быть определена из соотношения

где K1 — концентрация элемента в покрытии; V1— объем покры тия; V2 — объем расплава. Вследствие расплавления материала шероховатость легированной поверхности обычно велика, поэтому после этой операции требуется финишная (абразивная) обработка. Припуск на такую обработку обычно составляет до 0,4 мм.

2.5. Эксплуатационные показатели материалов после лазерной поверхностной обработки

Лазерная поверхностная обработка вызывает улучшение многих эксплуатационных характеристик облученных материалов. Специфическая топография обработанной поверхности, которая характеризуется образованием «островков» разупрочнения, служащих своеобразными демпферами для возникающих структурных и термических напряжений, а также «карманами» для удержания смазочного материала, позволяет существенно повысить износостойкость материала вследствие значительного уменьшения коэффициента трения (порой до 2 раз).

У большей части конструкционных сталей и сплавов наблюдалось увеличение износостойкости после лазерной обработки б 3—5 раз.

Такие механические свойства, как предел прочности σ, ударная вязкость КС, после лазерного облучения несколько снижаются, в то время как предел текучести σ0,2 практически остается без изменения. Однако с помощью дополнительного отпуска для снятия напряжений и σB, и σ0.2 могут быть увеличены в 1,3 раза по сравнению со стандартной термообработкой.

Лазерное упрочнение приводит к повышению теплостойкости (термостойкости) материала, например инструментальной стали Р6М5 па 70—80е С, что влияет на износостойкость режущих инструментов, изготовленных из этой стали. Насыщение матричного материала — алюминиевого сплава АЛ25 — железом, никелем, марганцем, медью приводит к увеличению его жаропрочности в 1,5—4 раза. Такое значительное улучшение жаропрочности представляет большой интерес для двигателестроения, где алюминиевые сплавы работают в условиях высоких температур.

Лазерное облучение позволяет в широких пределах изменять напряженно-деформированное состояние материала. Изменяя условия облучения, можно получать остаточные напряжения разной величины.

При маркировке лазерным излучением достигается миниатюрность наносимого знака. Ширина образующей знака может не превышать 10 мкм при размерах самого знака до нескольких десятков микрометров. Бесконтактность метода и отсутствие механического воздействия позволяют маркировать тонкостенные, хрупкие детали, узлы и изделия в сборе. Высокая точность и качестве знаков гарантируют надежность и стабильность их считывания фотоэлектронными устройствами. К достоинствам лазерной маркировки относятся высокая производительность и возможность полной автоматизации процесса.

Одна из наиболее распространенных схем маркировки Реализует точечно-матричный метод нанесения знаков, при котором каждая матрица представляет собой прямоугольное поле с 63 возможными положениями зон лазерного воздействия (матрица «9X7»). При построчном сканировании излучения энергия подводится по программе к тем точкам матрицы, совокупность которых обеспечивает получение требуемого буквенно-цифрового знака. Зона элементарного воздействия в этом случае представляет собой. микроотверстие (лунку) диаметром 70—80 мкм. При частоте подачи импульсов 4 кГц с помощью матрицы «9X7» можно обеспечить производительность маркировки до 30 знаков в секунду.

Матрица «9x7» позволяет получить качественные знак к высотой 3 мм и менее. С уменьшением высоты знака отдельные микро-лунки перекрываются с образованием микроборозд. Маркировка ведется излучением с модулированной добротностью при длительности импульсов  мкc и высокой пиковой мощности.

Маркировка может также выполняться по схеме, в которой используется специальная маска, формирующая на обрабатываемой поверхности знак требуемой конфигурации. Достоинством этой схемы является то. что весь знак или даже вся требуемая информация из нескольких знаков, заложенная в маске, может быть нанесена за время действия одного импульса или серии из нecкольких импульсов. Это обусловливает высокую производительность процесса. Однако при этом ограничивается разнообразие носителей информации.

Большое распространение лазерная маркировка находит в электронной промышленности и приборостроении. Так, на миниатюрных конденсаторах с обкладкой площадью 2 мм2 с помощью излучении с модулировкой добротностью лазера па алюмопттриевом гранате (ЛИГ) наносятся фирменный знак и величина емкости.

На поверхности кремниевых и ферритовых элементов магнитных головок наносятся маркировочные знаки высотой I мм при глубине знака 20 мкм. Нанесение семизначного числа на кремниевую пластину занимает 50 с, а одной цифры на ферритовую поверхность — 1с. Сетка и специальные знаки наносятся лазерным излучением на стеклянные элементы приборов. Предварительно на обрабатываемую поверх ность наносится слой графитового порошка. При плавлении стекла графит внедряется в расплав, з результате чего на стекле сохраняется хорошо различимый и надежно зафиксированный след.

Рис. 5 Схема лазерной маркировки поверхности детали из стекла

На детали из прозрачных материалов маркировочные обозначения, сетки и другие специальные знаки могут наноситься следующим оригинальным способом. Под стеклянную деталь подкладывается металлическая пластина (например, оцинкованная жесть). Излучение, сфокусированное линзой 2, направляется через стекло 3 и концентрируется на металлической поверхности 4 (рис. 5). При перемещении луча по заданной программе в результате испарения металла на стекло напыляется тонкая металлическая пленочная дорожка в соответствии с программой перемещения луча.

С помощью лазерного излучения маркировочные знаки можно наносить на детали и изделия из неметаллических материалов, бумаги, картона, стекла, различных композитных и полимерных материалов.

В связи с расширением использования высокооборотных механизмов, машин, агрегатов, навигационных и инерционных систем актуальность приобретает проблема совершенствования процесса балансировки, повышения ее точности, производительности.

Применение лазерного излучения для устранения дисбаланса в балансировочных установках позволяет не только повысит: точность и производительность процесса, но и добиться полной автоматизации этой сложной н трудоемкой операции. Лазерный способ уравновешивания даст возможность устранять дисбаланс в период вращения изделия за один его пуск, что значительно упрощает технологический процесс.

Одна из схем реализации процесса предполагает вращение балансируемой детали и фокусирующей системы с равной частотой. При такой схеме во время балансировки фактически воспроизводится процесс лазерной прошивки несквозных отверстий импульсным излучением при неподвижной детали. Возможен и другой путь достижения этого эффекта, но без сообщения дополнительного вращения фокусирующей системе. При этом длительность импульса подбирается настолько малой, что имитируется процесс обработки неподвижной детали. Такие длительности обеспечиваются при генерации излучения в режиме модулированной добротности. При E=35 Дж, t=:0,1 мс, q=3,51010 Вт/см2 съем на один импульс составляет для стали 18ХН9Т — 0,3 мг, латуни ЛЦ40С — 1,5 мг, дюралюминия Д16Т — 1,8 мг.

Задачи маркировки и гравирования решаются двумя путями: с помощью проекционного метода и с помощью гравирования и перфорирования символов на поверхности маркируемого изделия.

Фирма IBM Deutschland (ФРГ) использует проекционный метод маркировки. В качестве источника излучения в установку введен лазер на рубине с энергией в импульсе 20 Дж и частотой следования импульсов 1 Гц. Для формирования символа служит проекционная система, состоящая из телескопа с матовым стеклом, маски и фокусирующего объектива. Маска выполнена в виде диска из молибденовой фольги с прорезями в форме цифр и букв. По команде ЭВМ диск поворачивается на нужный угол и происходит засветка нужного символа. Фокусирующий объект передает изображение этого символа на маркируемую поверхность.

Реализуя второй метод, фирма Siemens на основе АИГ лазера с выходной мощностью до 100 Вт создала лазерную систему Silamatik для нанесения надписей на материалы с помощью лазера посредством отклоняющей оптики и системы зеркал.

Фирмы Holobeam и Teradyne в своем оборудовании используют лазеры на АИГ с модуляцией добротности и непрерывной накачкой.

В СССР разработан лазерный гравировальный автомат, предназначенный для прямого изготовления офсетных форм непосредственно с оригинала, минуя фоторепродукционные и фотохимические процессы.

Оригинал со штриховым или полутоновым изображением на непрозрачной или прозрачной основе закрепляется на одном цилиндре автомата, а формная пластинка — на другом цилиндре.

В качестве формного материала используется гладкая алюминиевая фольга с предварительно нанесенным лаковым подслоем, поглощающим лазерное излучение, и полимерным антиадгезионным покрытием.

Электрооптическая система построчно считывает оригинал, преобразуя оптическое изображение в электрический сигнал, который через модулятор управляет лазерным лучом. В качестве источника излучения используется СО2-лазер, работающий в непрерывном режиме генерации.

Лазерное излучение можно использовать для предварительного нагрева слоя материала на заготовке перед последующим удалением его режущим инструментом. При нагреве улучшается обрабатываемость стали вследствие изменения механических характеристик материала в зоне стружкообразования, увеличения его пластичности, снижения прочности и твердости. Однако наиболее распространенный в настоящее время метод предварительного нагрева с помощью плазменной струи позволяет локализовать тепловое воздействие лишь до пятна диаметром 6—8 мм, что значительно превышает подачу инструмента на оборот заготовки и приводит к образованию ЗТВ больших размеров. Поэтому применение плазменного нагрева ограничивается обдирочными, черновыми операциями механической обработки. Кроме того, установка плазмотрона загромождает зону обработки, а в случае образования слив-нон стружки имеется опасность короткого замыкания с корпусом плазмотрона. Эти недостатки устраняются при лазерном нагреве. Лазерное воздействие можно локализовать таким образом, чтобы нагреву подвергалась только зона стружкообразования (рис. 6, а). Эффективность

Рнс. 6. Схема лазерного воздействия при механической обработке

использования лазерного нагрева в значительной мере определяется плотностью мощности излучения. С увеличением q наблюдается значительное уменьшение результирующей силы резания. Так, при q = 7*104 Вт/см2 возможно снижение результирующей силы резания на 75% (рис. 6, б). Большое влияние на процесс резания оказывает расстояние L от направления воздействия луча до режущей кромки инструмента. При заданной плотности мощности излучения и определенной скорости резаная значение L должно быть выбрано оптимальным. При Р=~ 1,2 кВт диаметре пятна фокусирования 3 мм, скорости резания инструмента тальной стали vрез=ЗО м/мин оптимальное значение L=8 мм.

При лазерно-механической обработке жаропрочной стали снижается примерно в 2 раза шероховатость обработанной поверхности по сравнению с обычным резанием. Существенно, до 3 раз, может быть повышена и производительность обработки.

2.6. Типовые операции лазерной поверхностной обработки

Наиболее широкая область применения лазерной поверхностной обработки — инструментальное производство, например изготовление и эксплуатация режущего инструмента, элементов штамповой оснастки.

Лазерное упрочнение позволяет снизить в 3—4 раза износ инструмента путем повышения его поверхностной твердости при сохранении общей высокой динамической прочности, повышения теплостойкости, снижения коэффициента трения пары режущий инструмент — заготовка. Упрочнение может проводиться до передней или задней поверхности, а также одновременно по двум поверхностям.

Внедрение технологии лазерного упрочнения инструмента из сталей с пониженным содержанием вольфрама позволяет помимо повышения его стойкости значительно сократить расход дефицитной быстрорежущей стали.

Лазерное упрочнение приводит к повышению износостойкости штампов в 2 раза и более. Упрочнение пуансонов обычно проводиться по боковым поверхностям. При этом возможна многократная переточка пуансонов. При упрочнении по передней поверхности после очередной переточки кромки требуется повторная лазерная обработка.

Эффективно применение лазерного излучения для повышения работоспособности породоразрушающего инструмента для машин горнодобывающей промышленности. Здесь применение лазерной обработки приводит к росту износостойкости резцов комбайнов в 2—3 раза.

Широкое применение лазерная поверхностная обработка находит для повышения долговечности, надежности деталей различных машин и приборов во многих отраслях промышленности: химическом машиностроении, автомобильной промышленности, судостроении, авиастроении и т. д.

В автотракторостроении лазерное упрочнение применяется для повышения износостойкости распредвалов, коленвалов, шестерен заднего моста, рабочих поверхностей клапанов, клапанных седел, поршневых канавок, компрессионных колец, рычагов и других деталей. В нефтепромысловом оборудовании лазерное упрочнение применяют для повышения усталостной прочности резьбовой час-ти замковых соединений.

Высокую эффективность показала лазерная поверхностная обработка для повышения износостойкости внутренних рабочих участков длинномерной направляющей балки линий производства полимерной пленки (рис. 12). Возможность локального упрочнения направляющих лазерным излучением позволила отказаться от объемной термообработки, вызывающей значительные деформации и поэтому требующей дополнительной механической обработки (с назначением соответствующих припусков) для их устранения.



2019-10-11 373 Обсуждений (0)
Лазерные легирование, наплавка, маркировка, гравировка 0.00 из 5.00 0 оценок









Обсуждение в статье: Лазерные легирование, наплавка, маркировка, гравировка

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (373)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)