Мегаобучалка Главная | О нас | Обратная связь


Альфа-, бета- и гамма-лучи



2019-10-11 288 Обсуждений (0)
Альфа-, бета- и гамма-лучи 0.00 из 5.00 0 оценок




Мы уже упоминали о многочисленных попытках повлиять на способность радия излучать радиоактивные лучи. Эти попытки не привели ни к какому результату. Однако, пытаясь воздействовать на радий магнитным полем, Пьер и Мария Кюри обнаружили, что хотя лучеиспускающая способность радия при помещении его в магнитное поле не меняется (интенсивность излучения остаётся неизменной), сами радиоактивные лучи претерпевают сильное изменение при прохождении через магнитное поле. Однородный до вступления в магнитное поле луч разделяется полем на два луча. Один из этих лучей рас­пространяется так, как если бы магнитное поле на него совершенно не действовало; другой луч под влиянием поля резко изменяет направление своего движения.

Ко времени опытов Беккереля физикам уже были известны лучи, способные отклоняться в магнитном поле. Это были лучи, образованные потоком электрически заряженных частиц, движущихся в одном направлении. Из направления отклонения можно определить знак заряда, т. е. установить, является ли заряд частицы положительным или отрицательным. Более подробные сведения могли быть получены при наблюдении движения этих частиц в магнитном и электрическом полях. Как мы увидим далее, в этом случае возможно определить не только заряд, но и его отношение к массе движущейся частицы. Из опытов Кюри вытекало, что движущиеся заряды отрицательны, а измеренное отношение заряда к массе оказа­лось равным 5,3-1017 электростатических единиц на грамм. Таким же отношением заряда к массе обладают электроны, имеющие отрицательный электрический заряд. Из этого сопо­ставления можно было заключить, что по крайней мере часть лучей, испускаемых радием, представляет собой поток движу­щихся электронов.

Была измерена величина скорости электронов, испускаемых радием. Она оказалась весьма большой. Некоторые из элек­тронов имели скорость, близкую к скорости света, т. е. около 3.00 000 км в секунду.

Эти исследования немного приоткрыли таинственное покры­вало, окутывающее радиоактивные лучи, - оказалось, что часть их представляет собой поток движущихся электронов. Но что же представляет собой другая часть лучей, которая не отклоняется магнитным полем?

За её исследование взялся Резерфорд. Он заметил, что неотклоняемая в магнитном поле часть радиоактивных лучей обладает такими же странными особенностями в поглощении, как и весь пучок. Хорошо было известно и раньше, что при прохождении радиоактивных лучей через вещество различной толщины они поглощаются сначала очень сильно, а затем медленно, так что, в общем, они могут проходить через зна­чительные толщи вещества. Поэтому можно было думать, что радиоактивные лучи неоднородны и представляют собой «смесь» различных лучей, одни из которых поглощаются сильно, а другие слабо. Такая мысль до опытов Пьера и Марии Кюри никем не высказывалась. Однако, когда опыты Кюри подтвер­дили сложность состава радиоактивного излучения, естественно было предположить, что сильно поглощаемая часть излучения является потоком электронов, а другая часть этих лучей, которая, подобно лучам Рентгена, не отклоняется магнитом, так же как и лучи Рентгена, сравнительно слабо поглощается веществом. Опыт, однако, показал, что эта часть радиоактив­ных лучей ведёт себя в отношении поглощения так же, как и весь пучок. Уже очень тонкие слои вещества резко ослаб­ляют её интенсивность, а затем даже сравнительно толстые слои вещества поглощают остающиеся лучи незначительно.

Это различие и побудило Резерфорда к дальнейшим ис­следованиям.

А что, если и та часть лучей радия, которую Пьер и Ма­рия Кюри не смогли отклонить магнитным полем, тоже не­однородна? Что, если они пользовались слабым магнитным полем? Может быть, сильное магнитное поле окажет иное действие? И Резерфорд повторяет их опыты, но при этом он создаёт магнитное поле, гораздо более сильное, чем в их опытах.

Результат опытов Резерфорда оказался поразительным. Пучок лучей, который в опытах Кюри не отклонялся магнит­ным полем, в магнитном поле Резерфорда в свою очередь расщепился на две части. Одна из них по-прежнему не откло­нялась магнитным полем, а другая часть под действием силь­ного магнитного поля слегка отклонялась от своего первона­чального направления. Весьма интересным оказалось то, что эти лучи отклоня­лись в сторону, противоположную отклонению электронов. Следовательно, и эта часть радиоактивных лучей представ­ляет собой поток заряженных частиц (ибо на движение не­заряженных частиц магнитное поле не действует) и притом заряженных положительно. Опыт показал, что новые состав­ляющие радиоактивных лучей в отношении поглощения вели себя вполне определённым образом.

 

Рис. 1. Схема опыта по разделе­нию радиоактивных лучей магнит­ным полем.

1—радиоактивное вещество; 2 — свинцовая коробочка с тонким каналом, в котором помещается радиоактивное вещество; 3 — лучи, не отклонённые магнитным полем (гамма-лучи); 4 — лучи, слабо отклоняемые магнитным полем (альфа-лучи); 5 — лучи, сильно отклоняемые магнитным полем (бе­та-лучи); 6—область, в которой создано магнитное поле.

 

Та часть радиоактивного излучения, которая совершенно не отклонялась магнитным полем, поглощалась очень незна­чительно. Та же часть радиоактивного излучения, которую

Резерфорду впервые удалось отклонить, поглощалась чрез­вычайно сильно.

Создавалось впечатление, что лучи, наблюдавшиеся вначале Беккерелем, пред­ставляют собой смесь трёх типов лучей.

На рис. 1 приведено схе­матическое изображение раз­деления радиоактивных лу­чей магнитным полем.

Радиоактивные лучи со­стоят из лучей трёх различ­ных типов. Каждый из них получил своё особое название и обозначение. Их обозначили и назвали тремя первыми бук­вами греческого алфавита: альфа ( ), бета ( ) и гамма ( ). Альфа-лучами назвали те лу­чи, которые магнитным полем отклоняются слабо и представляют собой поток положительно заряженных ча­стиц. Бета-лучами стали назы­вать те лучи, которые сравни­тельно сильно отклоняются магнитным полем и представ­ляют собой поток электронов. Гамма-лучами стали называть лучи, которые совсем не отклоняются магнитным полем. Следует отметить, что альфа-лучи отклоняются в маг­нитном поле в виде узкого пучка, в то время как бета-лучи отклоняются магнитным полем в виде широкого размы­того пучка. Это обстоятельство говорит о том, что альфа-лучи, вылетающие из радия, имеют одинаковую энергию, а бета-лучи представляют собой поток электронов различной энергии.

Разделение радиоактивных лучей на альфа-, бета- и гамма-­лучи позволило исследовать их свойства отдельно. Вот неко­торые результаты этих исследований.

Альфа-лучи поглощаются наиболее сильно. Тонкий листо­чек слюды или алюминия толщиной всего лишь в 0,05 мм поглощает альфа-лучи почти полностью. Достаточно завер­нуть радий в обыкновенную писчую бумагу, чтобы поглотить все альфа-лучи. Альфа-лучи сильно поглощаются воздухом. Слой воздуха толщиной всего лишь в 7 см поглощает альфа-лучи радия почти нацело.

Бета-лучи поглощаются веществом значительно слабее. Они в состоянии ещё в заметном количестве пройти через пластинку алюминия толщиной в несколько миллиметров.

Гамма-лучи поглощаются во много раз слабее бета-лучей. Они проходят через пластинку алюминия толщиной в несколько десятков сантиметров. Пластинка свинца толщиной в 1,3 см ослабляет интенсивность гамма-лучей всего лишь в два раза.

Помимо различия в степени поглощения, между альфа-, бета- и гамма-лучами существует большое различие в характере поглощения. Наиболее отчётливо оно проявляется в изменении интенсивности этих лучей при постепенном возрастании тол­щины поглощающего вещества.

Бета- и гамма-лучи поглощаются постепенно. Уже самые небольшие слои вещества в некоторой мере поглощают эти лучи. Число электронов и интенсивность гамма-лучей постепенно падают с увеличением толщины фильтрующего слоя.

Альфа-лучи ведут себя совершенно иначе. При прохожде­нии через малые слои вещества число альфа-частиц не изме­няется. Уменьшается только энергия этих частиц. С возра­станием толщины поглощающего слоя энергия частиц про­должает уменьшаться, но число их сохраняется. Так будет происходить до тех пор, пока толщина поглощающего слоя не достигнет некоторой определённой величины. Фильтр та­кой толщины задержит сразу все альфа-частицы.

Таким образом, каждая альфа-частица проходит в дан­ ном веществе вполне определённый путь. Этот путь принято называть пробегом альфа-частицы. Пробег альфа-частицы за­висит от её энергии и от природы вещества, в котором она движется. Установив связь между пробегом и энергией альфа-частиц, можно в дальнейшем по величине пробега определять энергию альфа-частиц. Таким методом измерения энергии альфа-частиц широко пользуются на практике.

Сильное поглощение альфа-частиц может быть использовано для изучения их свойств.

Если взять радиоактивное вещество в виде шарика, то альфа-лучи, выходящие из всего объёма этого шарика, по­глощаются в самом шарике. Лишь очень тонкий поверхностный слой этого вещества испускает альфа-лучи, способные выйти наружу. Поэтому вне такого шарика должны наблюдаться главным образом бета- и гамма-лучи. Если же радиоактив­ное вещество распределить очень тонким слоем, то будут дей­ствовать почти- в одинаковом количестве все три рода лучей.

Сравнением действия радиоактивных лучей от толстого ра­диоактивного источника с действием радиоактивного препарата, распределённого в виде очень тонкого слоя, было установлено, что именно альфа-лучи ответственны за то, что радиоактивные лучи вызывают флюоресценцию и делают воздух проводником электричества.

Хорошо известно, что воздух делается проводником элек­тричества в том случае, если в нём образуются заряженные атомы - ионы. Альфа-лучи ионизуют воздух примерно в сто раз сильнее, чем бета- и гамма-лучи от того же радиоактив­ного источника. Но на образование ионов - на ионизацию воздуха требуется энергия. Было установлено, что на обра­зование одной пары ионов в воздухе требуется вполне опреде­лённая энергия, равная 33 электрон-вольтам[1]. Так как альфа-частицы образуют много ионов, то при своём движении в воздухе они тратят большое количество энергии. Этим и объясняется описанное ранее свойство альфа-лучей сильно поглощаться различными веществами. Впоследствии мы расска­жем, как было измерено число пар ионов, создаваемых одной альфа-частицей. Сейчас мы ограничимся только указанием этой цифры. Оказалось, что одна альфа-частица создаёт в воз духе около 200000 пар ионов. Это позволяет нам оценить энергию одной альфа-частицы. Энергия альфа-частицы оказа­лась приблизительно равной 6000000 электрон-вольт.


[1] В ядерной физике очень употребительна единица энергии, которую принято называть электрон-вольтом. Один электрон-вольт - это энергия, которую приобретает электрон, проходящий в электри­ческом поле разность потенциалов в 1 вольт. Один электрон-вольт - очень малая единица энергии, равная всего лишь 1,6-10- джоуля



2019-10-11 288 Обсуждений (0)
Альфа-, бета- и гамма-лучи 0.00 из 5.00 0 оценок









Обсуждение в статье: Альфа-, бета- и гамма-лучи

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (288)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)