Мегаобучалка Главная | О нас | Обратная связь


ОПРЕДЕЛЕНИЕ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ



2019-10-11 284 Обсуждений (0)
ОПРЕДЕЛЕНИЕ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ 0.00 из 5.00 0 оценок




Иррациональные уравнения

ВВЕДЕНИЕ

В школьном курсе алгебры рассматриваются различные виды уравнений – линейные, квадратные, биквадратные, кубические, рациональные, с параметрами, иррациональные и другие. Данная курсовая работа посвящена иррациональным уравнениям, методам их решения. Кроме того, в работе введены понятия уравнений следствий и равносильных уравнений, а также приведены примеры задач, математическими моделями которых служат иррациональные уравнения. В данной работе содержится небольшая историческая справка, посвященная введению иррациональных чисел.

ИЗ ИСТОРИИ

Термин «рациональное» (число) происходит от латиноамериканского слова ratio – отношение, которое является переводом греческого слова “логос”в отличие от рациональных чисел, числа, выражающие отношение несоизмеримых величин, были названы еще в древности иррациональными, т.е. нерациональными (по-гречески “алогос”) правда, первоначально термины “рациональный” и “иррациональный” относились не к числам, а к соизмеримым и соответственно не соизмеримым величинам, которые пифагорейцы называли выразимыми и невыразимыми, Теодор Киренский же симметричными и ассимметричными. В V-VI вв. римские авторы Капелла и Кассиодор переводили эти термины на латынь словами rationalis и irrationalis. Термин «соизмеримый» (commensurabilis) ввел в первой половине VI в. другой римский автор- Боэций.

Древнегреческие математики классической эпохи пользовались только рациональными числами (вернее целыми, дробными и положительными). В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически.

Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа. Греки называли иррациональную величину, например, корень из квадратного числа, «алогос» – невыразимое словами, а позже европейские переводчики с арабского на латынь перевели это слово латинским словом surdus – глухой. В Европе термин surdus- глухой впервые появился в середине XII в. у Герарда Кремонского, известного переводчика математических прозведений с арабского на латынь, затем у итальянского математика Леонардо Фабоначчи и других европейских математиков, вплоть до XVIII в. Правда уже в XVI в. Отдельные ученые, в первую очередь итальянский математик Рафаэль Бомбелли и нидерландский математик Симон Стевин считали понятие иррационального числа равноправным с понятием рационального числа. Стевин писал: «Мы приходим к выводу, что не существует никаких абсурдных, иррациональных, неправильных, необъяснимых или глухих чисел, но что среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью.»

Еще до Бомбелли и Стевина многие ученые стран Среднего Востока в своих трудах употребляли иррациональные числа как полноправные объекты алгебры. Более того, комментируя «Начала» Евклида и исследуя общую теорию отношения Евдокса, Омар Хайям уже в начале XII в. теоретически расширяет понятие числа до положительного действительного числа. В том же направлении много было сделано крупнейшим математиком XIII в. ат-Туси.

Математики и астрономы Ближнего и Среднего Востока вслед за астрономами древнего Вавилона и эллинистической эпохи широко пользовались шестидесятеричными дробями, арифметические действия с которыми они называли «арифметикой астрономов». По аналогии с шестидесятеричными дробями самаркандский ученый XV в. ал-Каши в работе «Ключ арифметики» ввел десятичные дроби которыми он пользовался для повышения точности извлечения корней. Независимо от него по такому же пути шел открывший в 1585 г. десятичные дроби в Европе Симон Стевин, который в своих «приложениях к алгебре» (1594 г.) показал, что десятичные дроби можно использовать для бесконечно близкого приближения к действительному числу. Таким образом, уже в XVI в. зародилась идея о том, что естественным аппаратом для введения и обоснования понятия иррационального числа являются десятичные дроби. Появление «Геометрии» Декарта облегчило понимание связи между измерением любых отрезков (и геометрических величин вообще) и необходимости расширения понятия рационального числа. На числовой оси иррациональные числа, как и рациональные, изображаются точками. Это геометрическое толкование позволило лучше понять природу иррациональных чисел и способствовало их признанию.

В современных учебных руководствах основа определения иррационального числа опирается на идеи ал-Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснованием свойств действительных чисел и полная теория их была разработана лишь в XIX в.

ОПРЕДЕЛЕНИЕ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ

Равносильные уравнения. Следствия уравнений.

При решении уравнений выполняются различные тождественные преобразования над выражениями, входящими в уравнение. При этом исходное уравнение изменяется другими, имеющими те же корни. Такие уравнения называются равносильными.

Определение: Уравнение f(x)=g(x) равносильно уравнению f1(x)=g1(x), если каждый корень первого уравнения является корнем второго и обратно, каждый корень второго уравнения является корнем первого, т.е. их решения совпадают.

Например, уравнения 3x-6=0; 2х–1=3 равносильны, т.к. каждое из уравнений имеет один корень х=2.

Любые два уравнения, имеющие пустое множество корней, считают равносильными.

Тот факт, что уравнения f(x)=g(x) и f1(x)=g1(x) равносильны, обозначают так:

 

f(x)=g(x)    f1(x)=g1(x)

В процессе решения уравнений важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.

 

Теорема 1: Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данному.

Доказательство:
Докажем, что уравнение f(x) = g(x)+q(x)      (1)
                                          равносильно уравнению

                                       f(x) – q(x) = g(x)     (2)

 

Пусть х=а – корень уравнения. Значит имеет место числовое равенство f(a)=g(a)+q(a) . Но тогда по свойству действительных чисел будет выполняться и числовое равенство f(a)-q(a)=g(a) показывающее, что а – корень уравнения (2). Аналогично доказывается, что каждый корень уравнения (2) является и корнем уравнения (1).

Что и требовалось доказатью.

 

Теорема 2: Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному.

 

Доказательство: докажем, что уравнение 6х–3=0 равносильно уравнению 2х–1=0

решим уравнение 6х–3=0 и уравнение 2х–1=0

                     6х=3                   2х=1

              х=0,5                     х=0,5

так как корни уравнений равны, то уравнения равносильны.

Что и требовалось доказать.

 

Рассмотрим уравнение

 

ОДЗ этого уравнения {х ≠ 1, х ≠ -3}

 

Мы знаем, что дробь равна нулю в том случае, когда ее числитель равен нулю, т.е. х²+х–2=0, а знаменатель не равен 0. Решая уравнение х²+х–2=0, находим корни х1=1, х2 = –2 . Но число 1 не входит в ОДЗ данного уравнения и значит, исходное уравнение имеет один корень х=-2.

 


В этом случае говорят, что уравнение х²+х–2=0, есть следствие уравнения

 

пусть даны два уравнения:

f1 (x) = g1 (x) (3)

f2 (x) = g2 (x) (4)

Если каждый корень уравнения (3) является корнем уравнения (4), то уравнение (4) называют следствием уравнения (3).


Этот факт записывают так:

 

В том случае, когда уравнение (3) - есть также следствие уравнения (4), эти уравнения равносильны.


Два уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого.

В приведенном выше примере уравнение – следствие
х²+х–2=0, имеет два корня x1=1 и х2 =-2, а исходное уравнение имеет один корень х=-2. В этом случае корень х=1 называют посторонним для исходного уравнения      


 

В общем случае корни уравнения-следствия, не являющиеся корнями исходного уравнения, называют посторонними.


Итак, если при решении уравнения происходит переход к уравнению – следствию, то могли появиться посторонние корни. В этом случае все корни уравнения-следствия нужно проверить, подставляя их в исходное уравнение. В некоторых случаях выявление посторонних корней облегчается знанием ОДЗ исходного уравнения – корни, не принадлежащие ОДЗ, можно сразу отбросить. Так, в приведенном примере посторонний корень х=1 не входит в ОДЗ уравнения и потому отброшен.

 


Иногда посторонние корни могут появиться и при тождественных преобразованиях, если они приводят к изменению ОДЗ уравнения. Например, после приведения подобных членов в левой части уравнения

                                                                                                                ОДЗ которого {х ¹-2},                        


получим уравнение следствие х²-4=0 имеющее два корня х1 = 2, х2 = -2 корень х2 = -2 – посторонний, так как не входит в ОДЗ исходного уравнения.

В тех случаях, когда в результате преобразований произошел переход от исходного уравнения к уравнению, не являющемуся его следствием, возможна потеря корней.

Например, уравнение (х+1)(х+3)= х+1 (5)

Имеет два корня. Действительно, перенося все члены уравнения в левую часть и вынося х+1 за скобки, получим (х+1)(х+2)=0, откуда находим х1=-1, х2=-2 .

Если же обе части уравнения (5) разделить («сократить») на х+1, то получим уравнение х+3=1, имеющее один корень х=-2. В результате такого преобразования корень х=-1 потерян. Поэтому делить обе части уравнения на выражение, содержащее переменную, можно лишь в том случае, когда это выражение отлично от нуля.

Для того, чтобы в процессе решения уравнения избежать потери корней, необходимо следить за тем, чтобы переход осуществлялся либо к равносильным уравнениям, либо к уравнениям-следствиям.

 

2.2. Определение иррациональных уравнений.

 

Иррациональными называются уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.

 

Например:


3. МЕТОДЫ РЕШЕНИЯ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ.

3.1. Решение иррациональных уравнений методом возведения обеих частей уравнения в одну и ту же степень.

 

Пример №1

 

Решить уравнение 

 

 

Возведем обе части уравнения (1) в квадрат:

 

далее последовательно имеем:

 

5х – 16 = х² - 4х + 4

х² - 4х + 4 – 5х + 16 = 0

х² - 9х + 20 = 0

 

 


Проверка: Подставив х=5 в уравнение (1), получим – верное равенство. Подставив х= 4 в уравнение (1), получим          – верное равенство. Значит оба найденных

значения – корни уравнения.

Ответ: 4; 5.

 

Пример №2

Решить уравнение: 

(2)

 

Решение:

 

Преобразуем уравнение к виду:

 

 и применим метод возведения в квадрат:

 

 

далее последовательно получаем.

 


Разделим обе части последнего уравнения почленно на 2:

 


еще раз применим метод возведения в квадрат:

 

далее находим:

9(х+2)=4–4х+х²

9х+18–4+4х-х²=0

-х²+13х+14=0

х²-13х–14=0

 

х1+х2 =13               х1 =19

х1 х2 = -14       х2 = -1

по теореме, обратной теореме Виета, х1=14, х2 = -1

корни уравнения х²-13х–14 =0

Проверка: подставив значение х=-14 в уравнение (2), получим–

- не верное равенство. Поэтому х = -14 – не корень уравнения (2).

Подставив значение x=-1 в уравнение (2), получим-                       

- верное равенство. Поэтому x=-1- корень уравнения (2).

 

Ответ: -1

 

3.2 Метод введения новых переменных.

Решить уравнение

 

Решение:

Конечно, можно решить это уравнение методом возведения обеих частей уравнения в одну и ту же степень. Но можно решить и другим способом – методом введения новых переменных.

Введем новую переменную Тогда получим 2y²+y–3=0 – квадратное уравнение относительно переменной y. Найдем его корни:


Т.к.             , то – не корень уравнения, т.к. не

может быть отрицательным числом       . А               - верное равенство, значит x=1- корень уравнения.

 

Ответ: 1.

 

Искусственные приёмы решения иррациональных уравнений.

 

Решить уравнение:

(1)                 

 

Решение:

Умножим обе части заданного уравнения на выражение

 

сопряжённое выражению

 

 

Так как

 

То уравнение (1) примет вид:

 

 

Или

 

 

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом известен. Тогда x1=0.Остаётся решить уравнение:

 

(2)

 

Сложив уравнения (1) и (2), придём к уравнению

 

(3)

 

Решая уравнение (3) методом возведения в квадрат, получим:

 

 

 

 

Проверка:

x1=0, x2=4, x3= -4 подставим в уравнение

1)                 

 

        - не верное равенство, значит x1=0- не корень  уравнения.

2)

 

 

     - верное равенство, значит x2=4- корень уравнения.

3)

 

                 - не верное равенство, значит x3= -4- не корень уравнения.

 

Ответ: 4.

ЗАКЛЮЧЕНИЕ

Итак, уравнения, которые содержат переменную под знаком корня, называются иррациональными. Иррациональные уравнения решаются в основном возведением обеих частей уравнения в квадрат (или n-ую степень) или введением новой переменной. Кроме того, пользуются и искусственными приемами решения иррациональных уравнений.

Список литературы

1) А.Г.Мордкович. Алгебра 8 класс. Учебник для общеобразовательных учреждений - Москва: Издательство «Мнемозина», 1999.

2) М.Я.Выгодский. Справочник по элементарной математике - Москва: Издательство «Наука», 1986.

3) А.П.Савин. Энциклопедический словарь юного математика – Москва: Издательство «Педагогика», 1989.

4) А.И.Макушевич. Детская энциклопедия – Москва: Издательство «Педагогика», 1972.

5) Н.Я.Виленкин. Алгебра для 9 класс. Учебное пособие для учащихся школ и классов с углубленным изучением изучением математики – Москва: Издательство «Просвещение», 1998.

 



2019-10-11 284 Обсуждений (0)
ОПРЕДЕЛЕНИЕ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ 0.00 из 5.00 0 оценок









Обсуждение в статье: ОПРЕДЕЛЕНИЕ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (284)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)