РАСЧЕТ БЫСТРОХОДНОЙ ПЕРЕДАЧИ РЕДУКТОРА
Принимаем для изготовления шестерни и колеса обеих ступеней для уменьшения номенклатуры сталь 40Х (улучшение) со следующими механическими характеристиками: для колеса σВ = 830 Н/мм2, σТ = 540 Н/мм2, НВ=260; для шестерни σВ = 930 Н/мм2, σТ = 690 Н/мм2, НВ=280. Эквивалентное число циклов перемены напряжений определяем по формуле (3.1) для колеса тихоходной ступени
(3.1)
где n – частота вращения того из колес, для которого определяется допускаемое напряжение, об/мин.
Определяем число циклов напряжения по формуле (3.2)
(3.2)
где Тmax = Т1 – максимальный момент, передаваемый рассчитываемым колесом в течение Lh1 часов за весь срок службы при частоте вращения nT1 об/мин; Т2…Тi – передаваемые моменты в течение времени Lh2…Lhi при nT2…nTi оборотах в минуту; с – число колес, находящихся в зацеплении с рассчитываемым. Так как режим нагрузки постоянный, NHE в формуле (3.2) заменяется на расчетное число циклов перемены напряжений, определяемое по формуле: (3.3)
где Lh – расчетный срок службы передачи.
NК1 = 60∙1477∙2000=17,7∙107 NК2 = 60∙369,25∙2000=4,43∙107
Определяем базовый предел контактной выносливости из формулы (3.4) для шестерен быстроходной и тихоходной ступени
= 2 НВ + 70 (3.4) = 2∙280 + 70 = 630 Н/мм2 ;
для колес
= 2∙260 + 70 = 590 Н/мм2 .
Допускаемые напряжения изгиба при расчете на выносливость определяются по формуле:
(3.5) . Принимаем SH=1,1÷1,2, SH=1,1.
Выбираем допустимое =536,36 МПа. Производим расчет на прочность тихоходной ступени как более нагруженной.
= НВ + 260(3.5) = 280 + 260=540 МПа = 260 + 260=520 МПа
Делительный диаметр шестерни d1 (мм) определяется из условия обеспечения контактной прочности по формуле
,(3.6)
где Kd – вспомогательный коэффициент, МПа1/3; Kd=770 – для стальных прямозубых колес; Kd=675 – для стальных косозубых и шевронных колес; - коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца; Т2Н – передаваемый крутящий момент на числа тех, число циклов действия которых превышает 0,03 NHE, Н·м (NHE – эквивалентное число циклов перемены напряжений); - допускаемое контактное напряжение, МПа. Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев по формуле:
aw=Ка(u+1) (3.5)
где для косозубых колёс Ка=43, а передаточное отношение редуктора uр=4. yab—коэффициент ширины колеса. Принимаем для косозубых колёс коэффициент ширины венца по межосевому расстоянию yab = =0.2 стр.157 /8/. где =1,09.
aw= =150,1 мм, принимаем 150 мм.
Рабочая ширина тихоходной ступени
Принимаем =30 мм. Для определения остальных диаметров зубчатых колес необходимо найти модуль, ориентировочное значение которого можно вычислить по формуле
(3.8)
Определяем модуль зацепления по формуле (3.8):
=25 (табл. 9.5 [3]). Принимаем m=2 мм. Принимая , определяем угол наклона зубьев:
(3.9)
Определяем суммарное число зубьев шестерни и колеса:
ZΣ= (3.10) ZΣ= 146,7 принимаем ZΣ=147.
Уточняем угол наклона зубьев:
сosβ= (3.11) сosβ= 0,913
Тогда угол β=11028’. Определяем действительное число зубьев шестерни:
(3.12) =29,4 Принимаем Z1=30 Число зубьев колеса:
Z2=ZΣ-Z1 (3.13) Z2=147-30=117
Уточняем диаметры:
(3.12)
Уточняем межосевое расстояние:
(3.13)
Диаметры колёс:
(3.15) (3.16) Производим проверочный расчет по контактным напряжениям, для чего определяем: окружную силу
(3.17) Н (3.18) Н
окружную скорость определим по формуле
(3.19)
По таблице 9.10 [1] назначаем 9-ю степень точности. По таблице 9.9 [1] g0=73, по таблице 9.7 [1] δН=0,002. Удельная окружная динамическая сила по формуле (3.20).
(3.20)
где δН – коэффициент, учитывающий влияние вида зубчатой передачи и модификации профиля зубьев. Значения δН при расчете на контактные и изгибные напряжения различны; g0 – коэффициент, учитывающий влияние разности шагов зацепления зубьев шестерни и колеса; v – окружная скорость, м/с. Отсюда удельная окружная динамическая сила равна:
.
Удельная расчетная окружная сила в зоне ее наибольшей концентрации по формуле (3.21).
(3.21) .
По формуле
(3.22)
По формуле
(3.23) (рис.9.7 [1]).
Для полюса зацепления расчетное контактное напряжение определяется по формуле (3.22). Определяем расчетное контактное напряжение по формуле
,(3.24)
где - коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе зацепления; при Х=0 и ХΣ =0 =200, =1,77 cos β; - коэффициент, учитывающий механические свойства материалов колес (Епр – приведенный модуль упругости материала зубчатых колес, v - коэффициент Пуассона); для стальных колес ; - коэффициент, учитывающий суммарную длину контактных линий; для прямозубых передач ; для косозубых и шевронных при ; - удельная расчетная окружная сила, Н/мм. Учитывая, что ZH=1,77·cos11028’=1,71; ZM=275.
(3.25)
Недогрузка 1,9% < Проверка по напряжениям изгиба: (3.26)
Находим значение коэффициента в зависимости от числа зубьев: YF1=3,9, YF2=3,6 по графику 9.6 [1]. Определяем эквивалентное число зубьев шестерни и колеса:
.
Расчет производим по шестерне. При
; (3.27)
По графику . По таблице 9.8 [1] =0,006; g0=73.
,
Из выражения (3.21)
.
По формуле (3.22) определяем
По формуле (3.23)
Напряжение изгиба определяем по формуле (3.24)
< .
Прочность по напряжениям изгиба обеспечена.
Популярное: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Почему стероиды повышают давление?: Основных причин три... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (206)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |