Мегаобучалка Главная | О нас | Обратная связь


Накопитель на жестком магнитном диске (НЖМД - винчестер). История развития накопителей на жестком магнитном диске



2019-10-11 179 Обсуждений (0)
Накопитель на жестком магнитном диске (НЖМД - винчестер). История развития накопителей на жестком магнитном диске 0.00 из 5.00 0 оценок




 

- 1956 — продажа первого коммерческого жёсткого диска, IBM 350 RAMAC, 5 Мб. Он весил около тонны, занимал два ящика — каждый размером с большой холодильник, а общий объем памяти 50 вращавшихся в нем покрытых чистым железом тонких дисков диаметром с большую пиццу составлял 5 мегабайт

 - 1980 — первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб

 - 1986— Стандарт SCSI

 - 1991 — Максимальная ёмкость 100 Мб

 - 1995 — Максимальная ёмкость 2 Гб

 - 1997 — Максимальная ёмкость 10 Гб

 - 1998 — Стандарты UDMA/33 и ATAPI

 - 1999 — IBM выпускает Microdrive ёмкостью 170 и 340 Мб

 - 2002 — Взят барьер адресного пространства выше 137 Гб (проблема 48-bit LBA)

 - 2003 — Появление SATA

 - 2005 — Максимальная ёмкость 500 Гб

 - 2005 — Стандарт Serial ATA 3G

 - 2005 — Появление SAS (Serial Attached SCSI)

 - 2006 — Применение перпендикулярного метода записи в коммерческих накопителях

 - 2006 — Появление «гибридных» жёстких дисков, содержащих дополнительный блок флэш-памяти

 - 2007 — Hitachi представляет накопитель ёмкостью 1 Тб

 - 2008 - WD VelociRaptor 300GB: самый быстрый HDD с интерфейсом SATA

 - 2009 - Hitachi к 2009 году создаст HDD объемом 4 терабайта

Накопи́тель на жёстких магни́тных ди́сках, жёсткий диск, хард, харддиск, HDD, HMDD или винче́стер, (англ. Hard ( Magnetic ) Disk Drive , HDD , HMDD) — энергонезависимое, перезаписываемое компьютерное запоминающее устройство. Является основным накопителем данных практически во всех современных компьютерах.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома. В некоторых НЖМД используется одна пластина, в других — несколько на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образуемого у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках 5-10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков, головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Ёмкость современных устройств достигает 1000 Гб. В отличие от принятой в информатике (случайно) системе приставок, обозначающих кратную 1024 величину, производителями при обозначении ёмкости жёстких дисков используются кратные 1000 величины. Так, напр., «настоящая» ёмкость жёсткого диска, маркированного как «200 Гб», составляет 186,2 ГиБ. Кроме того, часть производителей указывают неформатированную ёмкость (вместе со служебной информацией), что делает ещё большим «зазор» между заявленными «200 Гб» и реальными 160 ГиБ.

Физический размер (форм-фактор) — почти все современные накопители для персональных компьютеров и серверов имеют размер либо 3,5, либо 2,5 дюйма. Последние чаще применяются в ноутбуках. Получили распространение форматы — 1,8 дюйма, 1,3 дюйма и 0,85 дюйма. Прекращено производство накопителей в формфакторе 5,25 дюймов.

Время произвольного доступа — от 3 до 15 мс, как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 — 3,7 мс), самым большим из актуальных — диски для портативных устройств (Seagate Momentus 5400.3 — 12,5).

Надёжность определяется как среднее время наработки на отказ (Mean Time Between Failures, MTBF). Технология SMART (S.M.A.R.T. (англ. Self Monitoring Analysing and Reporting Technology) — технология оценки состояния жёсткого диска встроенной аппаратурой самодиагностики, а также механизм предсказания времени выхода его из строя.)

Количество операций ввода-вывода в секунду — у современных дисков это около 50 оп./сек при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Уровень шума — шум, который производит механика накопителя при его работе. Указывается в децибеллах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Сопротивляемость ударам (англ. G - shock rating) — сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate):

· Внутренняя зона диска: от 44,2 до 74,5 Мб/с

· Внешняя зона диска: от 60,0 до 111,4 Мб/с

Жёсткий диск состоит из следующих основных узлов: корпус из прочного сплава, собственно жесткие диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя и блок электроники.

Вопреки расхожему мнению, жесткие диски не герметичны, внутренняя полость жесткого диска сообщается с атмосферой через фильтр, способный задерживать очень мелкие (несколько мкм) частицы. Это необходимо для поддержания постоянного давления внутри диска при колебаниях температуры корпуса.

Пылинки, оказавшиеся при сборке в жёстком диске и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр — пылеуловитель.

Блок электроники

В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управление шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.

Интерфейсный блок обеспечивает сопряжение электроники жесткого диска с остальной системой.

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти позволяет увеличить скорость работы накопителя.

Интерфейс — набор, состоящий из линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил обмена. Современные накопители могут использовать интерфейсы АТА (AT Attachment, он же IDE — Integrated Drive Electronic, он же Parallel ATA), (EIDE), Serial; ATA, SCSI (Small Computer System Interface), SAS, FireWire, USB, SDIO и Fibre Channel.



2019-10-11 179 Обсуждений (0)
Накопитель на жестком магнитном диске (НЖМД - винчестер). История развития накопителей на жестком магнитном диске 0.00 из 5.00 0 оценок









Обсуждение в статье: Накопитель на жестком магнитном диске (НЖМД - винчестер). История развития накопителей на жестком магнитном диске

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (179)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)