Мегаобучалка Главная | О нас | Обратная связь


Память программ и данных МК



2019-10-11 411 Обсуждений (0)
Память программ и данных МК 0.00 из 5.00 0 оценок




В МК используется три основных вида памяти. Память программ представляет собой постоянную память (ПЗУ), предназначенную для хранения программного кода (команд) и констант. Ее содержимое в ходе выполнения программы не изменяется. Память данных предназначена для хранения переменных в процессе выполнения программы и представляет собой ОЗУ. Регистры МК — этот вид памяти включает в себя внутренние регистры процессора и регистры, которые служат для управления периферийными устройствами (регистры специальных функций).

 

Память программ

Основным свойством памяти программ является ее энергонезависимость, то есть возможность хранения программы при отсутствии питания. С точки зрения пользователей МК следует различать следующие типы энергонезависимой памяти программ:

- ПЗУ масочного типа — mask-ROM. Содержимое ячеек ПЗУ этого типа заносится при ее изготовлении с помощью масок и не может быть впоследствии заменено или перепрограммировано. Поэтому МК с таким типом памяти программ следует использовать только после достаточно длительной опытной эксплуатации. Основным недостатком данной памяти является необходимость значительных затрат на создание нового комплекта фотошаблонов и их внедрение в производство. Обычно такой процесс занимает 2-3 месяца и является экономически выгодным только при выпуске десятков тысяч приборов. ПЗУ масочного типа обеспечивают высокую надежность хранения информации по причине программирования в заводских условиях с последующим контролем результата.

- ПЗУ, программируемые пользователем, с ультрафиолетовым стиранием — EPROM (Erasable Programmable ROM). ПЗУ данного типа программируются электрическими сигналами и стираются с помощью ультрафиолетового облучения. Ячейка памяти EPROM представляет собой МОП-транзистор с «плавающим» затвором, заряд на который переносится с управляющего затвора при подаче соответствующих электрических сигналов. Для стирания содержимого ячейки она облучается ультрафиолетовым светом, который сообщает заряду на плавающем затворе энергию, достаточную для преодоления потенциального барьера и стекания на подложку. Этот процесс может занимать от нескольких секунд до нескольких минут. МК с EPROM допускают многократное программирование и выпускаются в керамическом корпусе с кварцевым окошком для доступа ультрафиолетового света. Такой корпус стоит довольно дорого, что значительно увеличивает стоимость МК. Для уменьшения стоимости МК с EPROM его заключают в корпус без окошка (версия EPROM с однократным программированием).

- ПЗУ, однократно программируемые пользователем, — OTPROM (One-Time Programmable ROM). Представляют собой версию EPROM, выполненную в корпусе без окошка для уменьшения стоимости МК на его основе. Сокращение стоимости при использовании таких корпусов настолько значительно, что в последнее время эти версии EPROM часто используют вместо масочных ПЗУ.

- ПЗУ, программируемые пользователем, с электрическим стиранием - EEPROM (Electrically Erasable Programmable ROM). ПЗУ данного типа можно считать новым поколением EPROM, п которых стирание ячеек памяти производится также электрическими сигналами за счет использования туннельных механизмов. Применение EEPROM позволяет стирать и программировать МК, не снимая его с платы. Таким способом можно производить отладку и модернизацию программного обеспечения. Это дает огромный выигрыш на начальных стадиях разработки микроконтроллерных систем или в процессе их изучения, когда много времени уходит на поиск причин неработоспособности системы и выполнение циклов стирания-программирования памяти программ. По цене EEPROM занимают среднее положение между OTPROM и EPROM. Технология программирования памяти EEPROM допускает побайтовое стирание и программирование ячеек. Несмотря на очевидные преимущества EEPROM, только в редких моделях МК такая память используется для хранения программ. Связано это с тем, что, во-первых, EEPROM имеют ограниченный объем памяти. Во-вторых, почти одновременно с EEPROM появились Flash-ПЗУ, которые при сходных потребительских характеристиках имеют более низкую стоимость;

- ПЗУ с электрическим стиранием типа Rash — Flash-ROM. Функционально Flash-память мало отличается от EEPROM. Основное различие состоит в способе стирания записанной информации. В памяти EEPROM стирание производится отдельно для каждой ячейки, а во Flash-памяти стирать можно только целыми блоками. Если необходимо изменить содержимое одной ячейки Flash-памяти, потребуется перепрограммировать весь блок. Упрощение декодирующих схем по сравнению с EEPROM привело к тому, что МК с Flash-памятью становятся конкурентоспособными по отношению не только к МК с однократно программируемыми ПЗУ, но и с масочными ПЗУ также.

Память данных

Память данных МК выполняется, как правило, на основе статического ОЗУ. Термин "статическое" означает, что содержимое ячеек ОЗУ сохраняется при снижении тактовой частоты МК до сколь угодно малых значений (с целью снижения энергопотребления). Большинство МК имеют такой параметр, как «напряжение хранения информации» - ustandby. При снижении напряжения питания ниже минимально допустимого уровня UDDM I N, но выше уровня USTAN d By работа программы МК выполняться не будет, но информация в ОЗУ сохраняется. При восстановлении напряжения питания можно будет сбросить МК и продолжить выполнение программы без потери данных. Уровень напряжения хранения составляет обычно около 1 В, что позволяет в случае необходимости перевести МК на питание от автономного источника (батареи) и сохранить в этом режиме данные ОЗУ.

Объем памяти данных МК, как правило, невелик и составляет обычно десятки и сотни байт. Это обстоятельство необходимо учитывать при разработке программ для МК. Так, при программировании МК константы, если возможно, не хранятся как переменные, а заносятся в ПЗУ программ. Максимально используются аппаратные возможности МК, в частности, таймеры. Прикладные программы должны ориентироваться на работу без использования больших массивов данных.

Регистры МК

Как и все МПС, МК имеют набор регистров, которые используются как для временного хранения данных (регистры общего назначения или РОН), так и для управления его ресурсами (специальные регистры).

РОН используются для временного хранения операндов и результатов выполнения команд, а также используются при выполнении команд пересылок данных между в качестве источников или приемников двоичных кодов.

В число специальных регистров входят обычно регистры процессора (аккумулятор, регистры состояния, индексные регистры), регистры управления (регистры управления прерываниями, таймером), регистры, обеспечивающие ввод/вывод данных (регистры данных портов, регистры управления параллельным, последовательным или аналоговым вводом/выводом). Обращение к этим регистрам может производиться по-разному.

В МК с RISC-процессором все регистры (часто и аккумулятор) располагаются по явно задаваемым адресам. Это обеспечивает более высокую гибкость при работе процессора.

По принципам отображения адресов регистров на общее адресное пространство памяти МК разделяют на МК с общим адресным пространством и МК с раздельным адресным пространством.

В первом типе МК все регистры и память данных располагаются в одном адресном пространстве. Это означает, что память данных совмещена с регистрами. Такой подход называется еще называется "отображением ресурсов МК на память".

Во втором типе МК адресное пространство регистров, как общего назначения, так и специальных отделено от общего пространства памяти. Отдельное пространство ввода/вывода дает некоторое преимущество процессорам с гарвардской архитектурой, обеспечивая возможность считывать команду во время обращения к регистру ввода/вывода.

Стек МК

Память длястека или стек (Stack) это часть оперативной памяти, предназначенная для временного хранения данных в режиме L I FO (Last I n - First Out). В МК стек используется для организации вызова подпрограмм и обработки прерываний. При этих операциях содержимое программного счетчика и основных регистров (аккумулятор, регистр состояния и другие) сохраняется и затем восстанавливается при возврате к основной программе.

Рисунок 1.4Принцип работы стека

Особенность стека по сравнению с другой оперативной памятью это заданный и неизменяемый способ адресации. При записи любого числа (кода) в стек число записывается по адресу, определяемому как содержимое регистра указателя стека, предварительно уменьшенное (декрементированное) на единицу (или на два, если 16-разрядные слова расположены в памяти по четным адресам). При чтении из стека число читается из адреса, определяемого содержимым указателя стека, после чего это содержимое указателя стека увеличивается (инкрементируется) на единицу (или на два), В результате получается, что число, записанное последним, будет прочитано первым, а число, записанное первым, будет прочитано последним. Такая память называется LIFO или памятью магазинного типа (например, в магазине автомата патрон, установленный последним, будет извлечен первым).

Принцип действия стека показан на рисунке 1.4 (адреса ячеек памяти выбраны условно).

Пусть, например, текущее состояние указателя стека 1000008, и в него надо записать два числа (слова). Первое слово будет записано по адресу 1000006 (перед записью указатель стека уменьшится на два). Второе по адресу 1000004. После записи содержимое указателя стека 1000004. Если затем прочитать из стека два слова, то первым будет прочитано слово из адреса 1000004, а после чтения указатель стека станет равным 1000006. Вторым будет прочитано слово из адреса 1000006, а указатель стека станет равным 1000008. Все вернулось к исходному состоянию. Первое записанное слово читается вторым, а второе первым.

Необходимость такой адресации становится очевидной в случае многократно вложенных подпрограмм. Пусть, например, выполняется основная программа, и из нее вызывается подпрограмма 1. Если нам надо сохранить значения данных и внутренних регистров основной программы на время выполнения подпрограммы, мы перед вызовом подпрограммы сохраним их в стеке (запишем в стек), а после ее окончания извлечем (прочитаем) их из стека. Если же из подпрограммы 1 вызывается подпрограмма 2, то ту же самую операцию мы проделаем с данными и содержимым внутренних регистров подпрограммы 1. Понятно, что внутри подпрограммы 2 крайними в стеке (читаемыми в первую очередь) будут данные из подпрограммы 1, а данные из основной программы будут глубже. При этом в случае чтения из стека автоматически будет соблюдаться нужный порядок читаемой информации. То же самое будет и в случае, когда таких уровней вложения подпрограмм гораздо больше. То есть то, что надо хранить подольше, прячется поглубже, а то, что скоро может потребоваться – с краю.

В системе команд любого процессора для обмена информацией со стеком предусмотрены специальные команды записи в стек (PUSH) и чтения из стека (POP). В стеке можно прятать не только содержимое всех внутренних регистров процессоров, но и содержимое регистра признаков (слово состояния процессора, PSW). Это позволяет, например, при возвращении из подпрограммы контролировать результат последней команды, выполненной непосредственно перед вызовом этой подпрограммы. Можно также хранить в стеке и данные, для того чтобы удобнее было передавать их между программами и подпрограммами. В общем случае, чем больше область памяти, отведенная под стек, тем больше свободы у программиста и тем более сложные программы могут выполняться.

В фон-неймановской архитектуре единая область памяти используется, в том числе, и для реализации стека. При этом снижается производительность устройства, так как одновременный доступ к различным видам памяти невозможен. В частности, при выполнении команды вызова подпрограммы следующая команда выбирается после того, как в стек будет помещено содержимое программного счетчика.

В гарвардской архитектуре стековые операции производятся в специально выделенной для этой цели памяти. Это означает, что при выполнении программы вызова подпрограмм процессор с гарвардской архитектурой производит несколько действий одновременно.

Необходимо помнить, что МК обеих архитектур имеют ограниченную емкость памяти для хранения данных. Если в процессоре имеется отдельный стек и объем записанных в него данных превышает его емкость, то происходит циклическое изменение содержимого указателя стека, и он начинает ссылаться на ранее заполненную ячейку стека. Это означает, что после слишком большого количества вызовов подпрограмм в стеке окажется неправильный адрес возврата. Если МК использует общую область памяти для размещения данных и стека, то существует опасность, что при переполнении стека произойдет запись в область данных либо будет сделана попытка записи загружаемых в стек данных в область ПЗУ.

Внешняя память

Несмотря на существующую тенденцию по переходу к закрытой архитектуре МК, в некоторых случаях возникает необходимость подключения дополнительной внешней памяти (как памяти программ, так и данных).

Если МК содержит специальные аппаратные средства для подключения внешней памяти, то эта операция производится штатным способом (как для МП).

Второй, более универсальный, способ заключается в том, чтобы использовать порты ввода/вывода для подключения внешней памяти и реализовать обращение к памяти программными средствами. Такой способ позволяет задействовать простые устройства ввода/вывода без реализации сложных шинных интерфейсов, однако приводит к снижению быстродействия системы при обращении к внешней памяти.

 



2019-10-11 411 Обсуждений (0)
Память программ и данных МК 0.00 из 5.00 0 оценок









Обсуждение в статье: Память программ и данных МК

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (411)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)