Метод наименьших квадратов для однофакторной линейной регрессии
КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ
КОНТРОЛЬНАЯ РАБОТА ПО ДИСЦИПЛИНЕ «ЭКОНОМЕТРИКА»
2007 Задания к контрольной работе: 1. Метод наименьших квадратов для однофакторной линейной регрессии 2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ. Модель: Y = (2/X) + 5; X = 0; 3. Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:
Нелинейную зависимость принять Метод наименьших квадратов для однофакторной линейной регрессии
Линейная регрессия находит широкое применение в эконометрике в виде четкой эконометрической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида:
Ŷ = а + bx или Ŷ = a + bx + ε;
Уравнение вида Ŷ = а + bx позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора X. На графике теоретические значения представляют линию регрессии.
Рисунок 1 – Графическая оценка параметров линейной регрессии
Построение линейной регрессии сводится к оценке ее параметров – а и b. Оценки параметров линейной регрессии могут быть найдены разными методами. Можно обратится к полю корреляции и, выбрав на графике две точки, провести через них прямую линию. Далее по графику можно определить значения параметров. Параметр a определим как точку пересечения линии регрессии с осью OY, а параметр b оценим, исходя из угла наклона линии регрессии, как dy/dx, где dy – приращение результата y, а dx – приращение фактора x, т.е. Ŷ = а + bx. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов(МНК). МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака (y) от расчетных (теоретических) минимальна:
∑(Yi – Ŷ xi)2 → min
Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной.
εi = Yi – Ŷ xi.
следовательно ∑εi2 → min
Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю. Обозначим ∑εi2 через S, тогда S = ∑ (Y –Ŷ xi)2 =∑(Y-a-bx)2;
Дифференцируем данное выражение, решаем систему нормальных уравнений, получаем следующую формулу расчета оценки параметра b:
b = (ух – у•x)/(x2-x2).
Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Например, если в функции издержек Ŷ = 3000 + 2x (где x – количество единиц продукции, у – издержки, тыс. грн.) с увеличением объема продукции на 1 ед. издержки производства возрастают в среднем на 2 тыс. грн., т.е. дополнительный прирост продукции на ед. потребует увеличения затрат в среднем на 2 тыс. грн. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследованиях.
Популярное: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (183)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |