Мегаобучалка Главная | О нас | Обратная связь


Билет№18 ВАХ мдп транзистора



2019-11-20 200 Обсуждений (0)
Билет№18 ВАХ мдп транзистора 0.00 из 5.00 0 оценок




 

Поскольку ОПЗ обладает высоким сопротивлением, то при увеличении ширины ОПЗ сечение канала уменьшается и его сопротивление возрастает. Самое низкое сопротивление канала и соответственно самый большой ток через него будет при нулевом напряжении на затворе (Uз = 0), затем по мере увеличения ширины ОПЗ при возрастании Uз и соответственно уменьшении сечения канала ток будет падать и при некотором напряжении отсечки Uзо канал полностью перекроется и ток через него перестанет возрастать. Соответствующие вольтамперные характеристика ПТУП приведены на рис. 77.

 

 

Рис. 77. Вольтамперные характеристики полевого транзистора с управляющим pn переходом

 

Выведем уравнение, описывающее ВАХ ПТУП, при этом сделаем ряд допущений, позволяющих значительно упростить расчет. Прежде всего будем использовать все допущения, которые ранее были сделаны при выводе ВАХ. Кроме того будем считать, что ток в канале определяется только основным носителями заряда и будем считать, что при нулевом смещении ширина ОПЗ близка к нулю. Тогда для геометрии, показанной на рис. 77 можно записать:

Rсо = ρL/S = ρL/(ba)

dRx = ρdx/(ba),                               (6_1)

где Rсо - сопротивление канала при нулевом напряжении на затворе.

Для ширины канала и ширины ОПЗ справледливо:

,           (6_2)

где U - разность потенциалов между p+ областью затвора и n областью канала в точке x.

 Поскольку N+ область затвора легирована значительно сильнее, чем область канала Na>>Nd, то (6_1) можно упростить:

                        (6_2а)

При некотором напряжении U0 канал перекроется, т.е. будет выполняться условие: w(Uо) = a - 2d(Uо) = 0 . Откуда:

                                 (6_3)

Для приращения напряжения вдоль канала, используя (6_1) запишем:

(6_4)             

Разделим переменных в (6_4) и выполним интегрирование по длине канала, учитывая что U(0) = Uз и    U(L)= Uc+Uз:

        (6_5)      

     (6_6)

Уравнение (6_6) представляет семейство характеристик с максимумами и описывает крутую часть вольтамперной характеристики ПТУП. Максимум соответствует точке перекрытия канала. В реальных характеристиках после достижения напряжением стока значения Uo спада тока не происходит, и характеристики идут параллельно оси напряжений см. рис. 78, т.е. происходит переход от крутой области ВАХ к пологой, в которой ток очень слабо зависит от Uс.

Насыщение тока Jс­ после перекрытия канала объясняется перераспределение падения напряжения между низкоомной и высокоомной (перекрытой) областями канала. После перекрытия канала Практически все напряжение падает в области перекрытия. Дальнейшее увеличение напряжение стока приводит к расширению области перекрытия и соответственно увеличению падения напряжения на ней и не сопровождается увеличением тока. В то же время ток не уменьшается, поскольку все электроны достигшие ОПЗ вблизи стока переносятся электрическим полем в область стока.

Пологая область ВАХ начинается после экстремальной точки характеристик. Найдем эту точку из условия dJc/dUc = 0. Продифференцируем и приравняем нулю (6_6):

Откуда: Uс = Uо - Uз.

Подставив в (6_6) это значение Uc для экстремальной точки, получим для пологой области ВАХ:

        (6_7)

 

Это выражение достаточно громоздко и поэтому вместо него, без значительной потери точности, используют более простое более выражение:

 

    (6_8)

На рис. 78 показаны зависимости тока стока от напряжения затвора (при Uк = 0.7 В, Uo = 5 В и Rс = 1кОм) рассчитанные по (6_7) нижняя и (6_8). верхняя кривая.

 

Рис. 78. Зависимости тока стока от напряжения затвора , рассчитанные по (6_8) - верхняя кривая м (6_7) - нижняя кривая

 

Если Uз>>Uк и Uo>> Uк (что справедливо в большинстве режимов), то:

                            (6_9)

Усилительные свойства полевого транзистора принято характеризовать крутизной S:

               (6_10)

Как видно из (6_10) с ростом напряжения затвора крутизна для полевого транзистора с управляющим pn переходом падает. Характер оответствующей зависимости крутизны от напряжения на затворе воспроизведен на рис. 79.Рис. 79. Зависимость крутизны полевого транзистора с управляющим pn переходом от напряжения затвора (Uo - напряжение отсечки).

 

                            Билет №16 ТИРИСТОРЫ

Тиристоры - многослойные структуры с чередующимися электронно-дырочными областям, двухэлектродные тиристоры называют денисторами, трехэлектродные - тринисторами. Иногда тиристоры называют кремниевыми управляемыми вентилями, что подчеркивает их основное назначение в силовой электронике - управление мощностью в нагрузке

 

Рис. 70. Примеры структур тиристоров: динисторы (а, г), управляемые тиристоры (б, в, д, е). Обозначения: А - анод, К - катод, У - управляющий электрод.

Функционально тиристоры являются электронными ключевыми элементами, сопротивление которых при определенном пороговом напряжении на них изменяется с высокого (выключенное состояние) на низкое (включенное состояние). Динистор имеет постоянный порог срабатывания, порог тринистора может изменяться током управляющего электрода. Пример характеристик динистора приведен на рис. 71а и тринистора на рис. 71б.

К катоду тиристора прикладывается отрицательное напряжение, к аноду положительное, поэтому центральный pn переход для запертого тиристора (т.А на рис. 71) оказывается смещенной в обратном направлении.

Центральный, смещенный в обратном направлении переход можно рассматривать как коллектор для расположенного слева pnp транзистора и расположенного справа npn транзистора. Действительно он собирает и перебрасывает в соседнюю область подходящие к нему неосновные носители заряда (дырки со стороны n - базы и электроны со стороны p- базы).и Как видно из диаграмма рис. 72 n и p базы тиристора являются потенциальными ямами соответственно для электронов и дырок как генерируемых в их объеме, так и поступающих. через коллекторный переход.

Генерируемые в области ОПЗ коллекторного перехода электроны и дырки разделяются полем этого перехода и поступают соответственно в n и p базы (см. левую диаграмму рис. 72. Для запертого тиристора (т.А) количество поступающих в базу неосновных носителей в результате тепловой генерации в области базы и области ОПЗ коллектора равно количеству носителей рекомбинирующих в базе и выходящих через эмиттерный переход создавая тепловой ток запертого тиристора (соответствующий т. А). При этом высота барьеров эмиттер-база для pnp и npn транзисторов близка к соответствующим значениям контактных разностей потенциалов.

При увеличении напряжения коллекторного перехода, в области ОПЗ коллектора начинается лавинное умножение неосновных носителей, что приводит к росту потоков электронов и дырок и их накопление в соответствующих базах. Появление дополнительного отрицательного заряда электронов в n базе приводит к приоткрыванию эмиттерного перехода pnp и инжекции дырок, заряд которых нейтрализует накопленный в базе заряд электроны. Появление дополнительного положительного заряда дырок в p базе приводит к приоткрыванию эмиттерного перехода pnp транзистора и инжекции электронов, заряд которых нейтрализует накопленный в базе заряд дырок. Инжектированные дополнительно носители через коллектор попадают в соседнюю базу, способствую дальнейшему открыванию соответствующих эмиттерных переходов и нарастанию тока. Процесс будет повторяться до тех пор, пока не будет достигнут предельно возможный в данной цепи ток, обусловленный внешней нагрузкой (если нагрузка активная, то это Imax ~ Eк/Rн). При этом тиристор переходит во включенное состояние (т. В на рис. 71) в котором он обладает минимальным сопротивлением. При этом как pnp транзистор (в дальнейшем будем связанные с ним величины обозначать индексом "p"), так и npn транзистор (в дальнейшем будем связанные с ним величины обозначать индексом "n") попадают в режим насыщения. Схематическое распределение носителей в базах тиристора для выключенного и включенного состояния показаны на рис. 73. На рисунке обозначены значения основных носителей для каждой из областей, однако следует иметь ввиду условность этих обозначений (концентрация основных носителей на несколько порядков выше, чем неосновных и в выбранном масштабе можно только отобразить факт их наличия и превосходства по концентрации).

Эквивалентная схема тиристора может быть представлена с помощью двух разнополярных транзисторов, имеющих общий коллекторный переход (рис. 74)Рассчитаем условие переключения тиристора, приняв за начало переключения момент, в который за счет положительной обратной связи начинается нарастание тока.Для токов электронного и дырочного токов коллекторного перехода можно записать: Iкp = αpIэp = αpIа, Iкn = αnIэp nIкат, где Iкp, Iэp, Iкn - соответственно управляемые дырочные и электронные токи эмиттера и коллектора, αp и αn коэффициенты передачи тока соответственно для pnp и npn транзисторов, Iа, Iкат - токи анода и катода (в рассматриваемом случае Iа = Iкат = I) . Общий ток тиристора I, будет включать как управляемые токи, так и тепловой ток коллекторного перехода Iк0: I = αpIа + αnIк+ Iк0 = Iк0 + (αp+ αn) I.

Откуда:                                 (5_1)

 

 

Из этой формулы следует, что если

p + αn) → 1,                                       (5_2)

то ток тиристора стремится к бесконечности. Таким образом (5_2) и будет условием включения тиристора. На рис. 74 показаны зависимости коэффициентов αp, αn и αS =p + αn) от тока через тиристор. Поскольку ток определяется напряжением на тиристоре, аналогичная зависимость будет если использовать в качестве аргумента напряжение. При этом моменту включения тиристора будут соответствовать значения некоторого порогового тока и напряжения: Iвкл, Uвкл. Изменяя характер зависимости αp(I) или αn(I) возможно изменять значения тока и напряжения, при которых происходит переход тиристора в состояние с малым сопротивлением.Для того, чтобы поднять напряжение включения часто искусственно занижают значение коэффициента передачи тока. Для этого можно использовать либо технологические приемы, например такие как уменьшение времени жизни носителей заряда в базе или увеличение толщины базы. Часто используют схемотехнические приемы шунтируя эмиттерный переход внешним сопротивлением Для того, чтобы снизить порог включения достаточно ввести неосновные носители заряда в одну из баз тиристора. Осуществить это возможно изготовив дополнительный управляющий электрод к одной из баз транзистора (см. рис. 70 б, в, г, д. ). Тогда чем больше ток управляющего электрода, тем раньше будет наступать включение.

Чтобы выключить транзистор необходимо создать условия при которых исчезает заряд инжектированный в базы транзистора и соответственно концентрации неосновных носителей около коллекторного перехода становится меньше или равны равновесным. При этом будет иметь место выход pnp и npn транзисторов из режима насыщения и соответственно переход тиристора в состояние с высоким сопротивлением. Проще всего выключить тиристор прекратив на некоторое время инжекцию заряда через эмиттерные переходы. При питании тиристора переменным напряжением это происходит автоматически в момент, когда напряжение проходит через ноль. Существуют специальные , запираемые типы тиристоров, в которых выключению способствует вытягивание носителей из базы управляющим электродом.

Широкое распространение в цепях переменного тока находят тиристоры с симметричными характеристиками - семисторы. Семисторы могут иметь управляющий, который позволяет изменять порог включения

 

 



2019-11-20 200 Обсуждений (0)
Билет№18 ВАХ мдп транзистора 0.00 из 5.00 0 оценок









Обсуждение в статье: Билет№18 ВАХ мдп транзистора

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (200)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)