Мегаобучалка Главная | О нас | Обратная связь


Растворимость сульфидов



2019-11-20 199 Обсуждений (0)
Растворимость сульфидов 0.00 из 5.00 0 оценок




СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. Методы получения сульфидов.

2. Физико-химические свойства сульфидов металлов

3. Растворимость сульфидов

4. Основные химические свойства сульфидов

Тиосоли

6. Полисульфиды.

7. Промышленное применение сульфидов

 

ВВЕДЕНИЕ

Соединения серы с более электроположительными элементами называются сульфидами. Большинство сульфидов, а именно сульфиды металлов, по способу образования и химическому поведению следует рассматривать как соли сероводородной кислоты. Сера в этих соединениях имеет отрицательную степень окисления –2.

Сульфиды щелочных и щелочноземельных металлов бесцветны.

Сульфидов тяжелых металлов имеют следующие окраски:

черные – HgS, Ag2S, PbS, CuS; оранжевые – Sb2S3, Sb2S5;

коричневые – SnS, Bi2S3;            желтые – As2S3, As2S5, SnS2,CdS

розовый – MnS;                           белый – ZnS.

Многие сульфиды при нагревании без доступа воздуха не претерпевают разложения. Но некоторые из них теряют серу. Так, например, пирит FeS2 уже при сильном нагревании распадается на сульфид железа (II) и серу; сульфид олова (IV) распадается при нагревании на сульфид олова (II) и серу. Устойчивые к нагреванию сульфиды в большинстве случаев можно нагревать в токе водорода: при этом они не изменяются. Напротив, при нагревании в токе кислорода или воздуха («обжиге») большинство сульфидов переходит в окислы, а иногда частично и в сульфаты. Сульфиды , выпавшие из водного раствора, уже при обычных температурах в значительной степени подвергаются окислению, если они во влажном состоянии долгое время находятся в контакте с током воздуха. При этом происходит или выделение серы или образование сульфата:

Fe2S3 + aq + 3/2O2 = Fe2O3*aq + 3S (1)

CuS + 2O2 = CuSO4 (2)

Легко окисляются и растворенные сульфиды; при этом они действуют как сильные восстановители.

    Сильное восстановительное сероводорода и сульфидов в растворе обусловлено незначительным сродством образования ионов S2-. В гальваническом элементе, составленном из нормального водородного электрода и платиновой фольги, погруженной в раствор сульфида, «серный электрод» вследствие тенденции ионов S2- разряжаться, становится отрицательным, а водородный электрод- положительным полюсом.

    Распространение сульфидов металлов в природе представлено в таблице 1.

Таблица 1

Распространение сульфидов в природе

Химическая формула Название минерала Форма кристаллической решетки Плотность,г/м3 Твердость
1 2 3 4 5
FeS2 марказит ромбическая 4,6-4,9 6,0-6,5
FeS пирротин гексагональная 4,54-4,64 3-4,5
FeS2 пирит кубическая 4,9-5,2 6,0-6,5
SnS2 оловянный камень тетрагональная 6,8-7,0 6-7
CuFeS2 халькопирит тетрагональная 4,1-4,3 3,5-4
PbS галенит, свинцовый блеск кубическая 7,3-7,6 2,5
Cu2S халькозин, медный блеск тетрагональная 5,5-5,8 2,5-3,0
MoS2 молибденит, молибденовый блеск тетрагональная 4,6-5,0 1,0-1,5
Ag2S аргентит, серебряный блеск кубическая 7,1 2,0-2,5
Sb2S3 cтибнит, сурьмяный блеск, серая сурьмяная руда, антимонит ромбическая 4,5-5,0 2
ZnS сфалерит, цинковая обманка кубическая 3,9-4,2 3,5-4,0
HgS киноварь тригональная 8,0-8,2 2,0-2,5
As4S4 Реальгар моноклинная 3,56 1,5-2,0
As2S3 аурипигмент моноклинная 3,4-3,5 1,5-2,0

 

    Колчеданы – светлые с металлическим блеском; блески – темные с металлическим отливом; обманки – темные без металлического блеска или чаще светлые, прозрачные.

 

Методы получения сульфидов

1. Взаимодействие гидроокисей с сероводородом

Эти методом получают в первую очередь растворимые в воде сульфиды, т.е. сульфиды щелочных металлов. Для этого необходимо: сначала насытить раствор гидроокиси щелочного металла сероводородом. При этом получается кислый сульфид (гидросульфид). Затем прибавляют равное количество щелочи для его перевода в нормальный сульфид:

NaOH + H2S = NaHS + H2O (3)

NaHS + NaOH = Na2S + H2O (4)

2.Восстановление сульфатов прокаливанием с углем.

Na2SO4 + 4C = Na2S + 4 CO (5)

    Этот метод является основным для получения сульфида натрия и сульфидов щелочноземельных металлов.

3. Непосредственное соединение элементов

    Соединение металлов с серой протекает в большинстве случаев очень легко, часто с большим выделением тепла. Однако оно редко приводит к образованию совершенно чистого продукта:

Fe + S = FeS (6)

4. Взаимодействие солей в водном растворе с сероводородом или сульфидом аммония.

    Этим методом получают в первую очередь нерастворимые в воде сульфиды.

Физико-химические свойства сульфидов металлов

    Физико-химические свойства сульфидов представлены в таблице 2.

Таблица 2

Физико-химические свойства сульфидов металлов

п/п

Формула

М, г/моль

плотность,

Тпл, 0С

Ткип, 0С

1 2 3 4 5 6  
1 Ag2S 247,82 7,2¸7,3 825 разлагается  
2 As2S3 246,0 3,43 310 707  
1 2 3 4 5 6  
3 As4S4 427,88 a 3,5 b 3,25 превр.в b 267 307 565  
4 BaS 169,43 4,25 - - 8H2O, 780  
5 Bi2S3 514,18 7,4 685, разл. -  
6 CdS 144,47 4,82 1750 Возгоняется в среде азота, 980  
7 Cu2S 159,20 5,6¸5,8 >1100 -  
8 CuS 95,63 4,6 разл.220 -  
9 FeS 87,90 4,7 1193 разлагается  
10 FeS2 119,96 4,9 1171 разлагается  
11 HgS 232,67 8,1 Возгоняется при 583,5 -  
12 K2S 110,25 1,80 840 -  
13 MoS2 160,07 4,6¸4,8 1185 -  
14 NaHS 56,07 1,79 350 -  
15 Na2S 78,05 1,86 >978 -  
16 NiS 90,75 5,2¸5,7 797 -  
17 P2S5 222,34 2,03 290 514  
18 PbS 239,27 7,5 1114 -  
19 Sb2S3 339,70 4,1¸4,6 550 -  
20 Sb2S5 403,82 4,12 разлагается -  
21 SnS2 150,70 6,95 >1990 Возгоняется при 1800-1900  
22 ZnS 97,44 4,0¸4,1 >1800 Возгоняется при 1180  

 

Растворимость сульфидов

Поскольку сероводород является двухосновной кислотой, от него производятся два ряда сульфидов: кислые сульфиды или гидросульфиды MHS и нормальные сульфиды M2S. Все кислые сульфиды очень легко растворимы в воде. Из нормальных сульфидов также легко растворимы сульфиды щелочных металлов. В водном растворе они очень сильно гидролизуются (в 1 Н. растворе примерно на 90%) по уравнению:

Na2S + HOH Û NaOH + NaHS или S” + HOH Û OH + HS (7)

Поэтому их растворы имеют сильно щелочную реакцию. Нейтральные сульфиды щелочноземельных металлов как таковые в воде не растворяются. Однако при действии воды они претерпевают гидролитическое расщепление, например,

2CaS + 2HOH = Ca(HS)2 + Ca(OH)2 (8)

а образующийся при этом кислый сульфид переходит в раствор. При кипячении раствора он также разлагается:

Ca(HS)2 + 2HOH = Ca(OH)2 + 2H2S (9)

Еще легче гидролизуются сульфиды некоторых многовалентных металлов, например сульфид алюминия AI2S3, сульфид хрома, сульфид кремния Cr2S3 SiS2 . Кислоты разлагают все эти сульфиды с выделение сероводорода.

Большинство сульфидов тяжелых металлов настолько мало растворимы в воде, что гидролитическое расщепление их не происходит. Некоторые сульфиды, разбавленные сильными кислотами не разлагаются. Произведение растворимости этих сульфидов настолько мало, что даже при понижении концентрации ионов S2- в растворе за счет прибавления ионов H+ концентрация ионов металла в растворе, находящемся в равновесии с сульфидом (донной фазой), очень незначительна. Поэтому, при пропускании сероводорода такие сульфиды будут выпадать в осадок даже из очень кислых растворов.

На том, что одна часть тяжелых металлов осаждается сероводородом из кислого раствора, а другая выпадает в осадок только из аммиачных растворов при действии на них раствора сульфида аммония, основано применение этих реактивов для разделения катионов при систематическом анализе.

Из кислого раствора сероводород осаждает следующие элементы в виде их сульфидов:

1) Мышьяк, сурьму и олово;

2) Серебро, ртуть, свинец, висмут, медь и кадмий;

При действии сульфида аммония осаждаются следующие элементы: цинк, марганец, кобальт, никель, железо, хром и алюминий. Два последних элемента выпадают в виде гидроокисей, так как их сульфиды гидролизуются водой.

    Сульфиды элементов, приведенных под 1), отличаются тем, что они способны растворяться в желтом полисульфиде аммония, образуя при этом тиосоли, тогда как сульфиды элементов группы 2) в этом реактиве не растворяются.

    Произведение растворимости ряда сульфидов приведено в таблице 3. Эти величины вычислены на основании соотношения

AF n = - RT*2,3026 *log L (10),

где L – произведение растворимости, AF n – нормальное сродство реакции

2M + S = M2S (11)

Таблица 3

Произведение растворимости кристаллических сульфидов металлов при 250С

соединение

произведение растворимости

свободная энергия образования

сульфида, ккал/моль иона металла, ккал/г-ион
MnS 1*10-11 -47,6 -53,4
FeS 5*10-18 -23,32 -20,30
NiS 2*10-21 -18,8 -11,1
ZnS 8*10-25 -47,4 -35,184
CoS 8*10-23 -21,8 -12,3
Co2S3 10-124 -47,6 29,6
CdS 7*10-27 -33,6 -18,58
PbS 8*10-28 -22,15 -5,81
HgS 3*10-52 -10,22 39,38
CuS 8*10-36 -11,7 15,53
Cu2S 1*10-48 -20,6 12,0
Ag2S 7*10-50 -9,56 18,43
Tl2S 7*10-20 -21,0 -7,755
Bi2S3 10-96 -39,4 15
La2S3 2*10-13 -301,2 -172,9
Ce2S3 6*10-11 -293,0 -170,5


2019-11-20 199 Обсуждений (0)
Растворимость сульфидов 0.00 из 5.00 0 оценок









Обсуждение в статье: Растворимость сульфидов

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (199)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)