Мегаобучалка Главная | О нас | Обратная связь


Уровни взаимосвязи между ката– и анаболизмом.



2019-11-20 180 Обсуждений (0)
Уровни взаимосвязи между ката– и анаболизмом. 0.00 из 5.00 0 оценок




ВИТАМИН “Н” (БИОТИН, коэнзим R , антисеборейный)             

Химическая природа: циклическое производное мочевины (имидазоловое и тиоэфирные кольца), боковая цепь которого представлена валериановой кислотой.

Коферментные формы: остаток биотина, связанный с -аминогруппой остатка лизина (биоцитин).

Участие в метаболизме: биотиновые ферменты катализируют два основных типа реакций:

а) реакции декарбоксилирования (с участием CO2 или HCO3-), сопряженные с распадом АТФ. Пример: ацетил-КоА и пируваткарбоксилазные реакции.

б) реакции транскарбоксилирования (без участия АТФ) – обмен карбоксильной группой между субстратами. Пример: обратимое превращение пировиноградной и щавелевоуксусной кислот.

в) имеют важное значение в синтезе ВЖК, белков, пуриновых нуклеотидов.

ВИТАМИН “С”(аскорбиновая кислота, антицинготный, антискорбутный)

Химическая структура: лактон кислоты со структурой, близкой к структуре L-глюкозы. Является сильной кислотой. Природные изомеры, обладающие витаминной активностью, относятся к L-ряду.

Коферментные формы: не известны.

Участие в метаболизме: биологическая роль связана с его участием в окислительно-восстановительных реакциях:

                   1. Витамин С, являясь сильным восстановителем, играет роль кофактора в реакциях окислительного гидроксилирования, что необходимо для окисления аминокислот пролина и лизина в оксипролин и в оксилизин в процессе биосинтеза коллагена.

                   2. Участвует в синтезе стероидных гормонов коры надпочечников (кортикостероидов).

                   3. Участвует в синтезе аминокислоты триптофана.

4. Способствует распаду тирозина и гемоглобина в тканях.

5. Необходим для всасывания железа.

6. Участвует в неспецифической иммунной защите организма.

Суточная потребность - около 100 мг в сутки.

Лечебная доза - до 1-2 г в сутки.

 

 

 

 

11. Катаболизм (диссимиляция) – расщепление крупных молекул до более простых веществ в результате окислительных процессов или процессов гидролиза и фосфоролиза, сопровождающееся разрывов ковалентных связей и высвобождением энергии.

 Примеры: гликолиз, гликогенолиз, окисление жирных кислот.

12. Анаболизм (ассимиляция) – синтез сложных органических соединений из простых молекул в результате восстановительных процессов (как правило), сопровождающийся образованием связей между малыми молекулами в процессе синтеза более высокомолекулярных соединений и осуществляющийся с затратой энергии.

 Примеры: глюконеогенез, синтез жирных кислот, фотосинтез у растений.

13. Отличия катаболизма от анаболизма:

Отличительный признак Катаболизм Анаболизм
1. Энергия Высвобождается (экзергонический процесс) Затрачивается (эндергонический процесс)
2. Характер процесса Окислительный Восстановительный
3. Локализация в клетке (компартментация метаболических процессов) Цитоплазма, митохондрии, лизосомы Цитоплазма клетки, рибосомы, ЭПС, КГ, ядро
4. Обратимость реакций Практически необратимы В основном обратимы

Также процессы катаболизма и анаболизма различаются по механизмам регуляции.

Уровни взаимосвязи между ката– и анаболизмом.

1. На уровне источников углерода (субстратов).

Продукты катаболизма – исходные субстраты для продуктов анаболизма. Важнейшие метаболиты, на уровне которых происходит пересечение метаболических путей: глюкозо-6-фосфат, пируват, ацетил-КоА.

2. На уровне восстановленных эквивалентов.

В процессе катаболизма происходит восстановление кофермента, который затем используется для анаболических процессов.

НАДФН – основной донор электронов в восстановительных реакциях биосинтеза. НАДН и ФАДН2 – основные акцепторы и переносчики электронов при окислении «топливных молекул».

3. На энергетическом уровне.

Катаболизм основных пищевых веществ сопровождается высвобождением энергии, которая может аккумулироваться в форме АТФ. При анаболических процессах происходит потребление АТФ с образованием АДФ и неорганического фосфата, используемых в реакциях диссимиляции для нового синтеза АТФ.

14. Макроэргические соединения (греч. makros большой + ergon работа, действие) – соединения, содержащие богатую энергией (макроэргическую) связь, при гидролизе которой изменения свободной энергии системы составляют более 5 ккал/моль.

Все известные М.с. содержат фосфорильную (—РО3Н2) или ацильную группы и могут быть описаны формулой Х—Y, где Х — атом азота, кислорода, серы или углерода, а Y — атом фосфора или углерода. Реакционная способность М.с. связана с повышенным сродством к электрону атома Y, что обусловливает высокую свободную энергию гидролиза макроэргической связи.

Примеры – фосфоенолпируват, 1,3-дифосфоглицерат, креатинфосфат, ацетил-КоА, АТФ, АДФ, пирофосфат.

15. Адениловая система – система адениловых нуклеотидов, которая включает в себя АТФ, АДФ, АМФ, неорганический фосфат и ионы Mg2+.

Роль адениловой системы:

1) играет центральную роль в энергообмене всех клеток

2) благодаря неустойчивости АТФ энергия ее концевой фосфоангидридной связи АТФ может использоваться на синтез фосфорилированных метаболитов, имеющих свободную энергию гидролиза меньше, чем АТФ. Обратное превращение АДФ в АТФ требует энергии.

Основные процессы, использующие энергию гидролиза АТФ:

1. Синтез различных веществ.

2. Активный транспорт (транспорт веществ через мембрану против градиента их концентраций). 30% от общего количества расходуемого АТФ приходится на Na++-АТФазу.

3. Механическое движение (мышечная работа).

16. Реакции и процессы, сопряженные с гидролизом АТФ, в клетках животных и растений:

1. Клетки скелетных мышц (главная функция – мышечное сокращение) широко используют катаболизм энергосубстратов (анаэробный гликолиз у белых мышечных волокон и окислительное фосфорилирование в красных мышечных волокнах) и запасание выделяющейся энергии в форме АТФ – основного источника энергии для сокращения и расслабления.

2. Кардиомиоциты - постоянно сокращаются и расслабляются, поэтому используют аэробный катаболизм энергосубстратов и интенсивный синтез АТФ, имеют высокую окислительную способность.

3. Гепатоциты– основные структуры обезвреживания веществ и биосинтеза, обеспечивают энергосубстратами мозг, мышцы и другие ткани. Содержат много митохондрий, активно идут процессы микросомного окисления, глюконеогенез, синтез мочевины и кетоновых тел.

4. Нейроны– основная работа – транспорт ионов для генерации ПД. Интенсивный дыхательный обмен, высокая гликолитическая и окислительная способность. Не содержат запасов энергосубстратов, не окисляют жирные кислоты. Основной энергосубстрат – глюкоза.

5. Адипоциты– основное место запасания, мобилизации и синтеза триацилглицеролов. Основной источник глицерол-3-фосфата в процессах синтеза – глюкоза. Пентозофосфатный путь.

6. Клетки почек– выполняют осмотическую работу, активный мембранный транспорт в ходе образования мочи, поддержание кислотно-щелочного баланса. В качестве энергосубстратов используют жирные кислоты, лактат, кетоновые тела. Идет интенсивное образование ионов аммония и глюконеогенез.

7. Эритроциты– транспорт О2 и СО2. Не имеют митохондрий, получают энергию путем анаэробного гликолиза. Синтезируют 2,3-дифосфоглицерат, способствующий высвобождению О2 из гемоглобина в тканях.

17. Механизмы образования АТФ в клетках животных и растений:

а) Фотосинтетическое фосфорилирование – синтез АТФ у растений за счет квантов солнечной энергии.

б) Окислительное фосфорилирование – синтез АТФ за счет энергии, выделяющейся при окислении водорода субстрата кислородом с участием дыхательной цепи. Основной способ синтеза АТФ для большинства клеток.

в) Субстратное фосфорилирование – синтез АТФ за счет энергии гидролиза макроэргической связи субстрата (пример: фосфоглицераткиназная и пируваткиназная реакции анаэробного гликолиза).

Для митохондрий характерно ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ.

18. Окислительное фосфорилирование – синтез АТФ за счет энергии, выделяющейся при окислении водорода органических субстратов кислородом с участием дыхательной цепи.

Основные положения хемиосмотической теории Митчелла:

а) Энергия, выделяющаяся при транспорте электронов I, III и IV комплексами дыхательной цепи, используется для перекачивания протонов в межмембранное пространство, генерируя градиент pH.

б) Обратный поток протонов по протонным каналам АТФ-синтазы в матрикс обеспечивает энергией головку АТФ-синтазы для синтеза АТФ.

19. Метаболический путь – последовательность химических превращений конкретного вещества в клетке:

а) Циклический метаболический путь – замкнутая последовательность химических превращений, приводящая в итоге к регенерации исходного вещества. Примеры: цикл лимонной кислоты, орнитиновый цикл мочеобразования Кребса.

б) Линейный метаболический путь – линейная последовательность химических реакций. Примеры: гликолиз, пентозофосфатный путь.

Регуляторные ферменты – ферменты, регулирующие метаболизм клеток, которые обычно располагаются либо в начале метаболических путей, либо в местах ключевых разветвлений, где сходятся два и большее число путей и которые катализируют в клетке либо практически необратимые реакции, либо реакции, протекающие наиболее медленно. Примером может служить фосфофруктокиназа-1, ацетил-КоА-карбоксилаза, пируваткарбоксилаза, протеинкиназа.



2019-11-20 180 Обсуждений (0)
Уровни взаимосвязи между ката– и анаболизмом. 0.00 из 5.00 0 оценок









Обсуждение в статье: Уровни взаимосвязи между ката– и анаболизмом.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (180)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)