Мегаобучалка Главная | О нас | Обратная связь


Обработка деталей из жаропрочных сплавов



2019-11-13 243 Обсуждений (0)
Обработка деталей из жаропрочных сплавов 0.00 из 5.00 0 оценок




 

Одним из перспективных технологических методов обработки деталей из труднообрабатываемых материалов, в частности, жаропрочных литейных и деформируемых сплавов является алмазное электрохимическое шлифование. Однако недостаточная изученность электрохимического шлифования алмазными кругами вообще, литейных жаропрочных сплавов типа ВЖЛ и деформируемых сплавов типа ЭИ826, в частности, потребовала постановки специального исследования, в процессе которого определяли влияние связки, как одного из основных факторов, на производительность процесса, удельный расход алмазов, шероховатость обработанной поверхности, составляющие силы резания и эффективную мощность. Кроме того, определяли изменение режущих свойств кругов на различных связках во времени. Исследования проводили при обработке кругами формы АЧК. Методика и условия проведения экспериментов приведены в работах [1, 2].

Как показывает анализ экспериментальных данных, фактическая производительность электрохимического алмазного шлифования деталей из сплава ВЖЛ достаточно высока, колеблется в очень широком диапазоне (400—740 мм3/мин) и существенно зависит от связки круга. Так, применение кругов на связке МВ-1 обеспечивает минимальную производительность, круги на связках М5-4 М5-6 и М5-8 позволяют производить обработку при интенсивности съема 600—640 мм3/мин, а использование кругов на связках М5-2 и М5-9 приводит к повышению производительности процесса до 740 мм3/мин.

На производительность процесса существенное влияние оказывает напряжение источника тока, характеризующее электрические режимы обработки. Так, если при напряжении 18 В использование круга на связке МВ-1 обеспечивает съем 400 мм3/мин, то при напряжении 8 В производительность достигает только 240 мм3/мин. Шлифование кругами других исследованных связок при меньшем напряжении также вызывает уменьшение производительности обработки, хотя и менее интенсивное.

Преимущества связки М5-2 по фактической производительности отмечены при обработке и других сплавов. Хотя, сопоставление по производительности и показало некоторые преимущества кругов на связке М5-2, осуществить выбор связки круга только по этому критерию без учета стойкости инструмента, шероховатости поверхности и других данных не представилось возможным. Так, установлено, что связка круга оказывает существенное влияние на величину микронеровностей при электрохимическом шлифовании алмазными кругами как литейных, так й деформируемых жаропрочных сПлавбВ. При обработке кругами на связке М5-6 величина Ra =\,5- Jr 2 мкм. Применение кругов на связках М5-2, М5-4 и М5-9 не показывает существенного различия и обеспечивает Ra = 0,63-ь0,32 мкм.

Связка круга оказывает существенное влияние на удельный расход алмазов. В принятых условиях обработки сплава ВЖЛ минимальные значения удельного расхода показали круги на связке М5-2—4,4 мг/г, максимальные— круги на связке М5-4 — 27,4 мг/г. Круги на связках М5-6, М5-8 и М5-9 характеризуются повышенными значениями расхода алмазов (10—16 мг/г).

При изменении условий обработки меняются и абсолютные значения удельного износа, однако качественно картина остается прежней. Изменение удельного расхода, вызванного изменением скорости круга и напряжения источника тока, свидетельствует о существенном влиянии этих составляющих режимов обработки на износостойкость инструмента.

При шлифовании деталей из сплава ЭИ826 удельный расход существенно ниже, чем при шлифовании этими же кругами деталей из сплава ВЖЛ. И в этом случае наименьший удельный расход алмазов был у кругов на связке М5-2. Так, если у кругов на связке М5-2 удельный расход составил 3 мг/г, то у кругов на связке М5-6— 8 мг/г, у кругов на связке М5-8— 10 мг/г, у кругов на связке М5-9 — 15 мг/г. Аналогичная и при обработке деталей из деформируемого сплава картина отмечена, независимо от режимов шлифования, ЭП220, хотя абсолютный удельный расход значительно выше и достигает значений, отмеченных при обработке деталей из сплава ВЖЛ.

 Составляющие силы резания и эффективная мощность шлифования дают важную информацию о качественной стороне процесса, позволяют оценить соответствующие характеристики инструмента, а динамика их изменения во времени позволяет достаточно уверенно определять его режущие свойства. Анализ зависимости, представленной на рис. 1, показывает, что при электрохимическом шлифовании алмазными кругами деталей из сплава ВЖЛ составляющие силы резания незначительны— нормальная составляющая не превышает 6,5 кгс. Тогда как по данным В. А. Шальнова при обычном шлифовании деталей из сплава ЖС6, обрабатываемость которого значительно лучше обрабатываемости сплава ВЖЛ, в случае применения довольно мягких (твердостью С1-МЗ) кругов из электрокорунда белого зернистостью 40 при глубине шлифования 0,02- мм/ход нормальная составляющая достигла 32 кгс.

Начальный период шлифования кругами на связке М5-2 (сплошные линии на рис. 1 ,а) характеризуется максимальными значениями составляющих силы резания и эффективной мощностью. Однако по мере увеличения продолжительности обработки интенсивность возрастания составляющих силы резания и эффективной мощности для кругов на связке М5-2 существенно ниже, чем для кругов на других исследованных связках (М5-4 — штриховые линии на рис. 1 ,а; М5-6 — штрихпунктирные линии на рис. 1, а\ М5-5 — сплошные линии на рис. 1,6; ТМ2-5 — штриховые линии на рис. 1,6). Результаты исследований показали, что в условиях незначительного анодного растворения составляющая силы Рх стабилизируется к 150—300 ходу в зависимости от вида связки (рис. \,в). Это имеет место и при шлифовании сплавов ЭИ 826 (штриховые линии) и ЭП 220 (сплошные линии).

В зависимости от длительности шлифования составляющие силы резания возрастают в широком диапазоне значений при более интенсивном увеличении составляющей Ру, что свидетельствует об интенсивном затуплении алмазных зерен. Это не соответствует довольно распространенному мнению о превалирующей роли электрохимического процесса в общем съеме металла. Существенное изменение обеих составляющих силы резания свидетельствует о нестабильности процесса во времени. При электрохимическом шлифовании деталей из жаропрочных сплавов различных марок по мере увеличения продолжительности шлифования режущие свойства алмазных кругов падают и круг затупляется.

При увеличении напряжения до 18 В интенсивность роста составляющих несколько меньше. Это явление можно объяснить увеличением роли электрических процессов в общем процессе съема припуска. Однако с увеличением напряжения интенсифицируются электроэрозионные процессы в зоне контакта, увеличивается удельный износ алмазов и возрастает шероховатость обработанной поверхности.

Необходимо отметить, что изменение эффективной мощности адекватно изменению нормальной составляющей, а не тангенциальной. Из этого следует, что имеющий достаточно широкое распространение способ расчета мощности процесса по тангенциальной составляющей неправомерен.

В результате комплексной оценки работоспособности кругов на различных связках было установлено явное преимущество кругов на связке М5-2, которые при условии стабильного обеспечения шероховатости поверхности в пределах Ra = 0,63-1-0,32 (8-й класс) обеспечивают максимальную производительность при минимальном удельном расходе.

После выбора связки круга для построения уравнения связи между технологическими параметрами и показателями процесса шлифования были проведены специальные эксперименты с применением математических методов планирования. Применение методов многофакторного планирования для исследования процессов электрохимического шлифования алмазными кругами позволило выдвигать различные гипотезы о характере и степени влияния технологических факторов исследуемого процесса на его конечные показатели, осуществить объективную проверку этих гипотез, по результатам данной выборки с определенной степенью достоверности оценить параметры функции распределения с учетом неопределенности, вносимой ограниченным числом экспериментов.

Эксперименты. проводили при шлифовании кругами формы АПП и АЧК. Методика и порядок проведения этих экспериментов, а также результаты проверки статической однозначности показателей электрохимического шлифования жаропрочных сплавов приведены в работе [3]. При использовании кругов АПП реализовывали схему дробного факторного эксперимента на двух уровнях с числом опытов 25-1. Шлифование кругами формы АЧК проводили по схеме 24~J. Выбор уровней осуществляли с учетом возможностей оборудования, чувствительности регистрирующей аппаратуры и режущей способности алмазного инструмента. Обработку результатов экспериментов, определение коэффициентов регрессии, расчет дисперсий адекватности воспроизводимости, критериев Фишера и определение доверительных интервалов производили с помощью ЭВМ.

Анализ приведенных зависимостей для удельного расхода показал, что на исследуемый фактор существенно влияют механические режимы шлифования, причем наибольшее влияние на износостойкость оказывает глубина шлифования. Видимо, это объясняется тем, что, с одной стороны, с увеличением глубины шлифования увеличивается сечение стружки, снимаемой единичным зерном, и возрастает нагрузка на зерно, в результате чего интенсифицируются все виды износа алмазов, а с другой стороны, при увеличении глубины шлифования падает роль анодного растворения в общем съеме материала, что также интенсифицирует износ алмазов.

Как показывает анализ приведенных зависимостей, для всех кругов увеличение скорости продольной и поперечной подач вызывает рост износа алмазов. Однако необходимо отметить различие в абсолютных значениях удельного расхода для кругов различных характеристик. Минимальные значения износа отмечены у кругов зернистостью 125/100 с концентрацией 100%. Уменьшение зернистости приводит к росту величины износа. Такое же действие оказывает рост концентрации. Видимо, это может быть объяснено следующим образом. Уменьшение зернистости при данной глубине шлифования вызывает рост числа зерен, приходящихся на единицу поверхности катода, и повышает нагрузку на зерно.

Скорость круга, хотя и в меньшей степени, чем другие составляющие механических режимов, также оказывает влияние на удельный расход алмазов. Как видно из приведенных формул, увеличение скорости вызывает некоторое снижение износа алмазов. Это обстоятельство объясняется суперпозицией действия двух полярно направленных факторов. Увеличение скорости шлифования приводит к уменьшению сечения стружки, снимаемой каждым зерном, что снижает нагрузку на каждое зерно. При этом очевидно, что все виды износа алмазного или абразивного инструмента — вырывание зерна с разрушением мостиков связки, объемное разрушение зерна по нескольким поверхностям, микроразрушение режущих кромок зерен, истирание зерна с образованием площадок износа, адгезионный износ — будут протекать менее интенсивно.

Вследствие же увеличения аэрогидродинамического эффекта затрудняется доступ электролита в зону обработки и увеличивается доля механического съема металла, что вызывает соответствующее увеличение износа алмазов. Так как превалирует действие первого фактора, то суммарный эффект показывает определенное снижение удельного расхода при росте скорости круга. Видимо, этот процесс особенно характерен для алмазных кругов крупной зернистости. Чем меньше зернистость, тем ниже интенсивность снижения нагрузки на зерно и тем меньше должно быть влияние скорости круга на износостойкость. Так, при изменении зернистости от 125/100 до 80/63 влияние скорости круга на износ алмазов уменьшилось примерно вдвое.

Большой интерес представляет влияние на износ алмазов напряжения источника тока, характеризующего электрические режимы обработки. Анализ экспериментальных данных показывает, что влияние напряжения на износ алмазов незначительно. Это свидетельствует, по-видимому, о малой доле анодного растворения в общем объеме съема металла. Независимо от характеристики круга доминирующее влияние на стойкость инструмента оказывают механические режимы шлифования.

Незначительная роль анодного растворения в общем объеме материала видна при анализе формулы для определения производительности процесса. Установлено, что, как и при обычном шлифовании, производительность процесса определяется произведением подач. Влияние скорости круга и напряжения источника тока незначительны, что подтверждает малую роль анодного растворения в общем съеме металла при данных условиях шлифования.

 Весьма интересна полученная модель для шероховатости поверхности при электрохимическом шлифовании. Анализ зависимостей для всех исследованных кругов показывает, что величины микронеровностей обработанных поверхностей в основном определяются напряжением источника тока, скоростью продольной подачи и глубиной шлифования. При этом необходимо отметить, что увеличение скорости продольной подачи приводит к существенному снижению величины микронеровностей. Это обстоятельство противоречит известным зависимостям для абразивного шлифования. Действительно, из геометрической теории шлифования известно, что увеличение скорости продольной подачи вызывает увеличение стружки, снимаемой единичным зерном, вследствие чего возрастает шероховатость обработанной поверхности. Многочисленные эксперименты, проведенные при обработке самых разнообразных по своим свойствам материалов, подтверждают это положение. С другой стороны, известно, что при электрохимическом процессе, чем ниже скорость перемещения детали, тем меньше величины микронеровностей, что также убедительно подтверждается экспериментально. Однако это справедливо для материалов с относительно мелкой зернистостью, обеспечивающей равномерность структуры, в результате чего на различных микроучастках поверхности скорость анодного растворения одинакова и при увеличении времени воздействия на элементарную поверхность шероховатость ее не изменяется.

Жаропрочные сплавы отличаются весьма большими размерами зерен, что обусловливает неравномерность анодного растворения на различных участках поверхности. В этих случаях следовало ожидать, что при относительно малом времени воздействия на элементарный участок поверхности границы между зернами будут растворяться более интенсивно, чем сами зерна, и величина микронеровностей будет определяться временем анодного растворения. Так как.при увеличении скорости продольной подачи уменьшается время контакта круга с деталью, то и растравливание поверхности происходит на меньшую глубину.

Относительно большая роль в образовании рельефа обработанной поверхности поперечной подачи объясняется тем, что часть высоты круга, проходящая по уже обработанной поверхности детали, резания не совершает, но создает электрическую цепь и вызывает растравливание поверхности, обработанной при предыдущем проходе, вызывая этим самым увеличение шероховатости.

Существенное влияние, оказываемое напряжением источника тока на шероховатость поверхности, объясняется, видимо, тем, что с ростом напряжения резко увеличивается избирательное межкристаллитное растравливание, что приводит к весьма заметному увеличению шероховатости поверхности. Кроме того, с увеличением напряжения, очевидно, возрастает растравливание в порах литого сплава, имеет место частичное смыкание пор, что также увеличивает шероховатость поверхности. Вместе с тем увеличение напряжения источника тока приводит к увеличению числа кратковременных локальных пробоев, что вызывает на обработанной поверхности следы электрической эрозии, которые увеличивают шероховатость обработанной поверхности.

Совокупное действие всех этих факторов и объясняет преимущественную роль напряжения источника тока в образовании рельефа обработанной поверхности. По результатам экспериментов очевидно, что шероховатость поверхности в зависимости от режимов, в первую очередь от напряжения источника тока, колеблется в весьма широких пределах — от Rz = 20 до Ra = 0,16 мкм (5-9 класс). Анализ полученной модели для нормальной составляющей силы резания показал, что с ростом механических режимов обработки и с уменьшением напряжения холостого хода источника тока в исследованном диапазоне режимов сила резания растет. Увеличение скорости продольной подачи, с одной стороны, уменьшает долю анодного растворения в общем съеме металла, что должно вызывать рост силы резания. С другой стороны, увеличение скорости продольной подачи приводит к увеличению общего объема стружки, снимаемой в единицу времени, что также вызывает увеличение силы резания.

Справедливость этого предположения подтверждается сопоставлением уравнений для составляющих силы резания при обработке кругами концентрацией 100 и 200%. Увеличение концентрации алмазов в круге приводит к увеличению числа зерен, взаимодействующих, с обрабатываемой поверхностью, что вызывает рост силы резания. Изменение концентрации алмазов оказывает влияние на вклад других факторов в формировании силы резания. Так, при концентрации 100% вклад поперечной подачи в формирование нормальной составляющей примерно такой же, как и вклад скорости продольной подачи — разница в степени влияния не превышает 20%, а при концентрации 200%, т. е. при увеличении числа зерен алмазов на элементарном участке поверхности круга вдвое, степень влияния поперечной подачи в формировании силы резания также возрастает вдвое.

Степень влияния различных режимных факторов на показатели процесса, а также собственно значения этих показателей во многом определяются числом алмазных зерен на поверхности круга.

Обращает на себя внимание то обстоятельство, что увеличение скорости круга вызывает рост нормальной составляющей, хотя при обычном шлифовании имеет место обратная зависимость. В связи с этим нами были проведены сравнительные исследования по методике однофакторного эксперимента при шлифовании кругами на различных связках и различных зернистостей, которые подтвердили полученные в многофакторном эксперименте результаты. Очевидно, это происходит вследствие ухудшения аэрогидродинамического режима зазора путем центробежного разбрасывания жидкости с поверхности круга, с одной стороны, и возрастания температуры обрабатываемой поверхности и испарения части жидкости в зазоре под воздействием этого тепла, с другой стороны.

В результате проведенных экспериментов установлено, что при электрохимическом шлифовании составляющие силы резания в зависимости от режимов обработки изменяются в довольно широком диапазоне. На величины составляющих силы резания существенное влияние оказывают напряжения источника тока. Увеличение напряжения интенсифицирует процесс анодного растворения, что, естественно, приводит к снижению силы резания.

Определенный интерес представляет изучение изменения степени влияния различных факторов на силу резания во времени. Известно, что увеличение продолжительности шлифования вызывает общее увеличение составляющих силы резания. При этом, если степень влияния скорости продольной подачи и глубины шлифования для кругов различных характеристик меняются по-разному, то вклад остальных факторов в формирование силы резания существенно возрастает. Необходимо отметить, что в условиях работы притуплёнными алмазными зернами резко возрастает влияние скорости вращения круга и, особенно, напряжения. В условиях интенсивного затупления алмазных зерен и падения их режущих свойств возрастает роль анодного растворения в съеме материала, и изменение напряжения источника тока будет решающим образом влиять на силу резания. Потерю режущих свойств круга целесообразно компенсировать интенсификацией, в первую очередь напряжения источника тока, так как уменьшение, например, подачи приведет к снижению производительности. Увеличение напряжения свыше 18 В нежелательно, так как это вызывает интенсивное искрение в рабочей зоне, ухудшает качество обработанной поверхности и приводит к повышенному износу круга. Поскольку шлифование торцом круга характеризуется достаточно высокой производительностью, а также с целью расширения технологических возможностей метода шлифования, большое внимание было уделено исследованию процесса электрохимического шлифования кругами чашечной формы.

При шлифовании торцом круга на износостойкость инструмента наибольшее влияние оказывает скорость продольной подачи, напряжение источника тока и глубина шлифования. Скорость круга влияет на износ алмазов несущественно. Удельный расход алмазов относительно невелик и колеблется в пределах 3—5 мг/г. Производительность обработки, как и при шлифовании периферией круга, определяется в основном скоростью продольной подачи глубиной шлифования.

Шероховатость обработанной поверхности определяется напряжением источника тока, глубиной шлифования и скоростью круга. Продольная подача на высоту микронеровностей влияния не оказывает." Столь существенная роль напряжения источника тока в формировании рельефа поверхности при шлифовании торцом круга объясняется значительным временем контакта круга с элементом обрабатываемой поверхности, что приводит к интенсивному межкристаллитному растравливанию. Если при обработке кругом формы ГШ время контакта колеблется в пределах 0,001—0,0001 с, то при шлифовании торцом круга оно составляет только 0,01—0,1 с.

Увеличение глубины шлифования приводит к возрастанию стружки, срезаемой одним зерном, и к увеличению числа кратковременных локальных пробоев. Действие обоих факторов направлено на увеличение шероховатости поверхности. Механизм влияния продольной подачи на рельеф нуждается в дальнейшем исследовании. На составляющие силы резания существенное влияние оказывает сечение снимаемой единичным зерном стружки и интенсивного анодного растворения поверхностного слоя.

На основании проведенных экспериментов оказалось возможным построение плоскостей равных уровней для различных показателей процесса и различных инструментов. По результатам исследований разработаны области одновременного существования конкретных значений шероховатости поверхности, удельного износа и фактической производительности для исследованных кругов, которые могут быть использованы для назначения режимов обработки (рис. 3). Сравнительная оценка моделей процесса электрохимического шлифования деталей из жаропрочных сплавов периферией и торцом круга свидетельствует об их качественном подобии при различной степени влияния отдельных факторов на выходные параметры процесса.

Электрохимическое шлифование, как и абразивное шлифование, способно вызывать значительные изменения свойств поверхностного слоя деталей. Возникающие в процессе обработки силы могут вызывать изменения микротвердости поверхностного слоя, появление остаточных напряжений, микротрещин и других дефектов. Исходя из этих соображений, были проведены исследования влияния технологических параметров на показатели качества поверхностного слоя обработанных поверхностей. Оценка качества обработанной поверхности производилась по степени и глубине наклепа, знаку, величине и глубине залегания остаточных напряжений. Исследования наклепа по глубине поверхности производили по мере стравливания слоев измерением микротвердости на приборе МПТ-3 при нагрузке 50 гс. Остаточные напряжения в поверхностном слое определяли по методу Давиденкова на плоских образцах размером 4X14X130 мм с нетравящими концами. Расчет остаточных напряжений производили по формуле

Остаточные напряжения рассчитывали с помощью ЭВМ. В принятых условиях электрохимического шлифования установлена закономерность изменения степени и глубины наклепа от глубины шлифования, продольной и поперечной подач, напряжения источника тока.

 Анализ полученных экспериментальных данных показал, что при электрохимическом шлифовании, несмотря на невысокие силы резания, поверхностный слой существенно упрочняется. Степень наклепа и глубина его залегания зависят от режимов обработки, особенно от напряжения источника тока. Например, увеличение поперечной подачи с 3 до 8 мм/ход приводит к увеличению степени наклепа поверхностного слоя с 410 до 510 кгс/мм2; глубина залегания наклепанного слоя увеличивается с 30 до 45 мкм. В то же время с увеличением напряжения источника тока в пределах исследованных значений (4—17 В) степень наклепа снижается примерно в 1,5 раза, а глубина залегания наклепанного слоя уменьшается c. 60 до 30 мкм. Величина, знак и характер распределения остаточных напряжений в поверхностном слое также существенно зависят от режимов обработки.

Установлено, что при электрохимическом шлифовании деталей из жаропрочных сплавов имеют место остаточные напряжения сжатия, величина которых колеблется в достаточно широких пределах в зависимости от режимов обработки и в ряде случаев достигает 60 кгс/мм2 . Глубина деформированного слоя превышает 150 мкм.

Большой практический интерес представляет экспериментально установленный факт незначительного влияния на остаточные напряжения механических режимов шлифования. Увеличение скорости круга и продольной подачи, при условии обеспечения требуемого качества поверхности, является важнейшим резервом повышения производительности труда.

Электрические режимы шлифования, как видно из сопоставления эпюр остаточных напряжений, полученных при различных напряжениях источника тока, оказывают существенное влияние на величину остаточных напряжений. Увеличение напряжения источника тока, т. е. интенсификация электрохимического растворения и уменьшение механического съема, приводит к уменьшению остаточных напряжений в тонком поверхностном слое, а глубина залегания при этом практически не изменяется. Абразивное шлифование кругами из белого электрокорунда при тех же режимах приводит к образованию остаточных напряжений растяжения, величина которых на поверхности достигает 40 кгс/мм2, а глубина залегания превышает 1000 мкм.

Травление образцов, прошлифованных абразивным инструментом, показало наличие сетки микротрещин, образование которых вызвано значительными (свыше 1500°С) температурами шлифования в поверхностном слое. Высокие температуры, развиваемые при абразивном шлифовании, обусловили образование остаточных напряжений растяжения. В то же время при электрохимическом шлифовании температуры в поверхностном слое существенно ниже и не превышают для исследованных условий 250—300 °С, что свидетельствует об их незначительном влиянии на формирование поверхностного слоя.

При разработке конкретных для каждого данного случая мероприятий по технике безопасности нужно исходить из учета того, что электрохимическое шлифование осуществляется алмазными и абразивными кругами, неправильная эксплуатация которых может привести к их разрыву, а электрохимическое растворение сопровождается образованием в зоне обработки газов и аэрозолей, химическим воздействием электролитов, выделением водорода и т. д. Особенности процесса электрохимического

растворения требуют соблюдения ряда специфических мероприятий.

 

 


Список литературы

1. Вайнберг Р. Р., Васильев В. Г. Сила резания при электрохимическом шлифовании жаропрочных сплавов. Научно-технический реферативный сборник «Алмазы». М., НИИМАШ, 1973, № 2, с. 27—29.

2. Вайнберг Р. Р., Васильев В. Г. Электрохимическое шлифование жаропрочных сплавов алмазными кругами на металлической связке. — В сб. Экономичность и точность абразивно-алмазной обработки. М„ МДНТП, 1971. с. 59-64.

3. Васильев В. Г., Вайнберг Р. Р., Серебренник Ю. Б. Электрохимическое шлифование жаропрочного сплава алмазными кругами. — «Электронная обработка материалов». Академия наук Молдавской ССР. Кишинев, 1974, № 2 (56).

4. Захаренко И. п., Савченко Ю. Я. Влияние характеристики алмазных кругов на показатели электролитической совместной обработки твердого сплава. — «Синтетические алмазы», 1973, № 1. с. ;30—34.



2019-11-13 243 Обсуждений (0)
Обработка деталей из жаропрочных сплавов 0.00 из 5.00 0 оценок









Обсуждение в статье: Обработка деталей из жаропрочных сплавов

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (243)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.026 сек.)