Мегаобучалка Главная | О нас | Обратная связь  


Методы получения основных промышленных коагулянтов




 

В настоящее время наиболее распространённым, из применяемых коагулянтов, является сульфат алюминия. Область его применения велика: в качестве реагента для очистки питьевой воды в сфере централизованного и питьевого водоснабжения; на станциях водоподготовки топливно-энергетического комплекса (ТЭЦ, котельные); в целюлозо-бумажной промышленности для проклейки бумаги, производства ДВП и консервирования дерева; в текстильной промышленности в качестве протравы при крашении хлопчатобумажных, шерстяных и шёлковых тканей; дубление кож; для очистки бытовых и промышленных сточных вод. /11/.

Основным методом производства очищенного сульфата алюминия в настоящее время является получение его из гидроксида алюминия. Большое распространение этого метода обусловлено относительной его простотой, возможностью получения высококачественного продукта с незначительным содержанием оксидов железа, а также пониженными транспортными расходами. Но использование в качестве сырья для получения сульфата алюминия дорогостоящего и дефицитного гидроксида алюминия, являющегося полупродуктом при получении металлургического глинозёма, нерационально. Поэтому стремятся получать этот продукт из дешёвого и повсеместно распространённого алюминиевого сырья, например каолинов, бокситов, нефелинов, алунитов и др. /12/.



Значительное число способов получения сульфата алюминия связано с различием применяющихся в производстве видов исходного алюминий содержащего сырья и различными требованиями к качеству продукта.

Получение коагулянта (неочищенного сульфата алюминия). Сырьём для получения коагулянта является каолин – тонкодисперсная глинистая порода, состоящая в основном из каолинита Al 2 Si 2 O 5 ( OH )4 (Al 2 O 3 – 39,5; SiO 2 – 46,54; H 2 O – 13,96% масс.).

Исходное сырьё – каолин – подвергается термообработке в барабанных вращающихся печах при 700 – 800 ºС. В процессе термообработки исходное сырьё освобождается от исходной воды и после охлаждения до 50 – 80 ºС поступает в реактор, где обрабатывается 65 – 67%-ной серной кислотой при 105 – 110 ºС в течение 6 – 8 ч. В процессе реакции поддерживается 6 – 8 %ный избыток серной кислоты.

Образующуюся в реакторах массу сливают в кристаллизационный лоток, футерованный кислотоупорными плитками. Для облегчения удаления затвердевшей массы коагулянта из кристаллизаторов процесс разложения каолина проводят избытком серной кислоты, нейтрализуемой в конце процесса каолином. Автоматически действующая машина для снятия сульфата алюминия с плоских кристаллизационных столов представляет собой сдвоенную пластинчатую цепь с ножами и гребками. Перемещаясь непрерывно поперёк кристаллизатора, машина срезает целевой продукт слой за слоем и передаёт его на ленточный транспортёр, расположенный вдоль кристаллизатора.

Разработан более совершенный способ получения неочищенного сульфата алюминия практически полным разложением исходного сырья, поддерживая значительный избыток исходной серной кислоты, заметно сокращая тем самым продолжительность реакции с последующей нейтрализацией избытка кислоты нефелиновой мукой.

Разработан и применяется в промышленности способ получения неочищенного сульфата алюминия (коагулянта) из нефелина.

Согласно действующей в производстве технологии, смешение крепкой серной кислоты и нефелинового концентрата производят в двух соединённых последовательно каскадно-расположенных реакторах, снабжённых трёхлопастными мешалками. В первый реактор непрерывно подают серную кислоту и нефелиновый концентрат. Образующаяся в первом реакторе густая реакционная масса непрерывно перетекает во второй реактор, откуда выходит из нижней части реактора через гидравлический затвор в ковшовый дозатор. Из ковшового дозатора реакционная масса поступает в шнек-реактор, куда подают воду из расчёта разбавления серной кислоты до 70 – 73% основного вещества. Продолжительность нахождения реакционной массы в шнеке-реакторе составляет 28 – 30 с, а степень разложения исходного нефелина повышается до 85 – 88%. Из реактора сухая рассыпная масса с температурой 80 – 100 ºС поступает на склад, где целевой продукт охлаждается и дозревает в течение 2 – 4 сут.

Получение очищенного сульфата алюминия. Производство очищенного сульфата алюминия может быть организована с использованием алюминиевого концентрата, получаемого при предварительном обогащении каолина и глин. За основу технологии принято разложение кремнийсодержащих соединений алюминия диоксидом серы. Процесс проводится в присутствии воды. Поэтому первой стадией процесса является образование промежуточного соединения H 2 SO 3.

Разложение каолина сернистой кислотой при 25 – 65 ºС и атмосферном давлении протекает медленно. Увеличение скорости процесса разложения каолина и степени перехода Al 2 O 3 в водорастворимое состояние достигают повышением давления и температуры в аппарате.

Полученную суспензию фильтруют, освобождают от нерастворимого осадка, представляющего собой в основном кремнезём, а полученные чистые растворы гидролизуют. Экспериментально установлено, что в процессе гидролиза образуются основные сернисто-кислые соли алюминия различного состава.

Процесс упрощается обработкой отфильтрованных растворов сульфит-гидросульфита алюминия серной кислотой.

Сульфат алюминия получают также из растворов, образованных растворением боксита в серной кислоте. Известен также способ получения сульфата алюминия с утилизацией травильных растворов /13/.

Коагулянт может быть получен из золы некоторых углей, содержащей Al 2 O 3. Из золы углей получают коагулянт, содержащий до 8 – 10% Al 2 O 3. Однако извлечение Al 2 O 3 из золы составляет всего в пределах 60 – 80%.

По наиболее распространённому способу очищенный сульфат алюминия получают растворением в серной кислоте гидроксида алюминия /13/.

Процесс ведут в реакторе, футерованном кислотоупорным кирпичом по слою диабазовой плитки загружая в него одновременно исходные гидроксид алюминия, серную кислоту и воду. Перемешивание реакционной массы проводят острым паром, поддерживая постоянную температуру в реакторе 110 – 120 ºС. Процесс заканчивается в течение 20 – 30 мин. Образующуюся реакционную массу, содержащую 13,5 – 15,0% Al 2 O 3, для ускорения процесса последующей кристаллизации охлаждают в реакторе до 95 ºС, продувая через массу в течение 10 мин сжатый воздух. После охлаждения массу сливают на кристаллизационный стол, оборудованный автоматической машиной для срезки застывшего продукта /13/.

Разработан способ /14/, включающий репульпацию гидроксида алюминия в воде, смешение пульпы с серной кислотой с образованием плава, выдержку последнего при 100 – 120 ºС для полного разложения гидроксида алюминия, введение в плав мелкодисперсной затравки, отверждение охлаждённого воздухом плава путём его кристаллизации на охлаждаемой и смачиваемой водой поверхности. Предлагаемый способ позволяет в 1,5 раза интенсифицировать процесс получения кристаллогидрата сульфата алюминия в целом.

Известен способ /15/ по которому отработанную серную кислоту производства сульфокатионита КУ-2-8, содержащего 0,5 – 1,5% органических примесей и дихлорэтан, смешивают с гидроксидалюминийсодержащим соединением при 95 – 115 ºС. При этом органические примеси кристаллизуются в виде алюминиевой соли вместе с сульфатом алюминия, а выделившийся дихлорэтан возвращается в производство сульфокатионита. Целью изобретения явилась разработка безотходного способа переработки серной кислоты с получением сульфата алюминия с улучшенной коагулирующей способностью.

По одному из разработанных способов /16/, гидроксид алюминия разлагают серной кислотой при 110 – 120 ºС, сплав охлаждают и распыляют на слой готового продукта в течении 0,4 – 0,8 с. Затем ведут последующую грануляционную кристаллизацию в течение 15 – 25 мин.

Разработан и внедрён в производство способ кристаллизации, согласно которого процесс кристаллизации проводят на охлаждаемой изнутри наружной поверхности горизонтального вращающегося барабана. Барабан частично погружен в находящийся в поддоне плав, имеющий температуру 90 – 100 ºС. Кристаллизаторы облегчают условия труда, обеспечивают непрерывность режима производства и улучшают физические свойства целевого продукта.

Разработан способ непрерывного получения сульфата алюминия /13/, по которому водная суспензия гидроксида алюминия и серная кислота в стехиометрическом отношении подаются с большой скоростью дозирующими насосами в смесительные форсунки реактора, в котором масса находится не менее 30 с, после чего она охлаждается до температуры ниже 100 ºС в проточном холодильнике и продавливается через сопла и прорези для образования мелкогранулированного продукта.

Разработан способ получения кристаллического сульфата алюминия высокой чистоты выдерживанием в отдельном сборнике суспензии, полученной в процессе упарки раствора, до её охлаждения, с целью образования более крупных частиц примесей. После массу охлаждают для кристаллизации /13/.

Известно изобретение /17/, предназначенное для получения гранулированного сульфата алюминия. Способ получения гранулированного сульфата алюминия заключается в том, что плав сульфата алюминия пропускают через перфорированную виброперегородку в гидрофобную жидкость для образования сферических частиц при весовом соотношении гранулированного сульфата алюминия к гидрофобной жидкости в пределах от 1 : 1 до 1 : 3, при этом температуру гидрофобной жидкости поддерживают в пределах 10 - 20oС, а время пребывания гранул в гидрофобной жидкости составляет 10 - 30 мин, затем разделяют гидрофобную жидкость от образовавшихся гранул. Плав сульфата алюминия пропускают через перфорированную виброперегородку с диаметром отверстий 0,5 - 0,8 мм при поддержании температуры плава 100 - 115oС. Разделение гидрофобной жидкости и образовавшихся гранул осуществляют на центрифуге с фактором разделения от 300 до 1000 при 25 - 45oС. Изобретение позволяет удешевить процесс и улучшить качество продукта.

 

Заключение

Основным методом производства очищенного сульфата алюминия в настоящее время является получение его из гидроксида алюминия. Большое распространение этого метода обусловлено относительной его простотой, возможностью получения высококачественного продукта с незначительным содержанием оксидов железа, а также пониженными транспортными расходами /12/.

 Именно таким способом, до настоящего времени, получают коагулянт – сульфат алюминия на ОАО « Капролактам». Продукт получают двух видов: водный раствор и в твёрдой кусковой форме. В эмалированный реактор загружают гидроксид алюминия, серную кислоту и воду. Реакционная масса выдерживается до созревания продукта. Затем для получения жидкого продукта в промежуточном реакторе расплав разбавляют водой, чтобы концентрация сульфата алюминия в растворе в пересчёте на Al 2 O 3 была не менее 7%. Для получения твёрдого сульфата алюминия расплав из реактора разливают в формы. Затвердевший коагулянт освобождают от форм и дробят вручную, что приводит к значительным потерям продукта.

Эти две формы не слишком удобны для транспортировки. О применении дозировочно-расфасовочного оборудования в этих условиях говорить не приходится. Многотоннажные потребности в коагулянте – сульфате алюминия для очистки питьевой воды заставляют решать вопрос его получения в такой форме, которая позволила бы применять расфасовочно-дозировочное оборудование при дальнейшем использовании коагулянта в технологических процессах очистки питьевой воды. Наиболее удобной формой твёрдого коагулянта – сульфата алюминия являются чешуйки и сферические гранулы.

Выпуск продукта в гранулированном виде позволит решить ряд важных проблем: обеспечить транспортировку продукта в затаренном виде, что уменьшит потери его при транспортировке, перегрузках, хранении. На водоочистных станциях возможно будет внедрить прогрессивное сухое дозирование коагулянта, широко используемое в мировой практике. Всё это способствовало бы дополнительной экономии дефицитного сульфата алюминия /1/.

Поэтому актуален поиск путей получения гранулированного сульфата алюминия, как коагулянта.

 

 

Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Читайте также:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (116)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7