Мегаобучалка Главная | О нас | Обратная связь


Объект регулирования АПЗ-2



2019-12-29 138 Обсуждений (0)
Объект регулирования АПЗ-2 0.00 из 5.00 0 оценок





1. Обработка исходных данных Методом площадей.

Данный метод был разработан М.П. Симою. Метод служит для определения передаточной функции объекта по экспериментальной кривой разгона.

В основе метода лежит предположение, что исследуемый объект может быть описан линейным дифференциальным уравнением с постоянными коэффициентами:

 

 (2)

W(p) = S bipi / S ajpj [-], b0 = 0, a0 = 1

Задача состоит в том, чтобы определить неизвестные коэффициенты

а1 ¸ а n и b 1 ¸ bm .

Коэффициенты ai будут определяться по следующим формулам:

 

а1 = F 1 + b 1

а2 = F 2 + b 2 + F 1 b 1

а3 = F 3 + b 3 + b 2 F 1 + b 1 F 2

…………….

а i = Fi + bi + S bjFi - j

 

В системе уравнений, приведенной выше i = m + n. Составляющие элементы системы определяются из следующих формул:

 

F 1 = D t { S (1- s ) – 0.5}

F 2 = F 1 2 D Q { S [1 - s ]*[1 - Q ] – 0.5}

F 3 = F 1 3 D Q { S [1 - s ]*[1 – 2* Q + Q 2 /2] – 0.5}

и т.д.

Для нахождения передаточной функции данного объекта по его кривой переходного процесса, воспользуемся методом площадей (Симою).

По исходной кривой значения Yi для каждого значения времени заносим в таблицу Exсel и находим значения, необходимые для вычисления значений Fi.

Исходя из полученных данных, имеем:

 

F1 = 3,2875, F2 = 5,31953, F3 = 7,30796. F4 = -7,61321

 

По полученным значениям видно, что разница между F3 и F4 существенная, при этом F4 является числом отрицательным, что дает нам основание говорить о том, что значение коэффициента а4 = 0.

Исходя из приведенных выше формул нахождения а i , получаем коэффициенты b 1 , a 1 , a 2, а3:

 

b 1 = 1,042; a 1 = 4,32927; a 2 = 8,74435, а3 = 12,8497.

 

Передаточная функция имеет вид:

 

W(p) = (1,042 + 1)/(12,8497р3 + 8,74435р2 + 4,32927р + 1).

 

Построим данную передаточную функцию в пакете VisSim, получим характеристику и найдем все ошибки (среднеквадратическое отклонение, абсолютную и относительную (приведенную) ошибки). График полученной характеристики приведен в приложении.

 

t Уэ Ур hi = Уэ – Ур Dhi2
1 0,25 0,05 0,06 0,01 0,0001
2 0,5 0,11 0,13 0,02 0,0004
3 1 0,16 0,18 0,02 0,0004
4 1,5 0,21 0,24 0,03 0,0009
5 2 0,29 0,3 0,01 0,0001
6 3 0,5 0,518 0,018 0,000324
7 4,25 0,6 0,73 0,13 0,0169
8 4,5 0,7 0,8 0,1 0,01
9 5 0,8 0,85 0,05 0,0025
10 5,5 0,9 0,94 0,04 0,0016
11 5,75 0,95 0,953 0,003 0,000009

 

Произведем все необходимые вычисления.

 

d =√ ∑0,033233⁄11=0,001

 

абсолютная ошибка D = max {|Yр – Yэ|} = 0,003

относительная ошибка D = D*100% / (|Ymax - Ymin|) = 0,0101 %.

Судя по полученным значениям ошибок, можно сделать вывод, что полученная переходная характеристика модели является достаточно адекватной относительно исходным экспериментальным данным.

2. Частотные характеристики.

 

Для построения частотных характеристик необходимо полученную передаточную функцию представить в частотном виде путем замены p = jw. После произведенной замены, необходимо выделить реальную и мнимую части данной передаточной функции звена.

Производя простые математические преобразования и вычисления, получаем функцию звена в виде:

 

W(jw) = Re + jIm

W(jw)=

 

По полученному выражению получаем значения для построения АЧХ, ФЧХ и АФЧХ. Для этого вновь воспользуемся программой MSExcel для удобства проведения громоздких расчетов (Таблица значений АЧХ и ФЧХ приведена в приложении). График АФЧХ – есть зависимость Im(Re). По полученным значениям и по виду графика можно видеть, как меняется данная зависимость.

По полученным графикам можно сделать вывод, что данное звено является фильтром низких частот. Оно пропускает амплитуду сигнала на более низких частотах. На высоких частотах это пропускание стремится к нулю. Об этом говорит график АЧХ. График ФЧХ показывает то, что с увеличением частоты подаваемого на вход сигнала, происходит снижение рассогласования фаз выходного и входного значений сигнала. АФЧХ, в свою очередь, имеет интересный вид. График пересекает единичную окружность дважды, и стремится к нулю. Если в случае замкнутой системы это говорит о ее устойчивости по Ляпунову, то в случае разомкнутой это также говорит об устойчивости. Данное утверждение подтверждает и вид переходной характеристики, построенной при помощи пакета VisSim30 (графики АЧХ, ФЧХ, АФЧХ и график переходной характеристики полученного звена приведены в приложении).

 

3.По заданному закону регулирования найти математическую модель ЗСАУ.

 

Используя заданный ПИД–регулятор, необходимо найти математическую модель замкнутой системы автоматического управления (ЗСАУ). ПИД – закон имеет следующие заданные параметры и вид передаточной функции:

 

ПИД – Кп = 0,8 Ки = 0,1 Тд = Кд = 10

Составим структурную схему данной САУ:

                     ПИД               W(P)

 

Описание работы системы: управляющий сигнал подается на вход регулятора. Регулятор преобразует входной сигнал и преобразованный по своему закону сигнал подает на вход объекта регулирования. Выходной сигнал вновь подается на вход системы, но только на, так называемое, устройство сравнения, и с учетом полученной разности выходного сигнала подается на вход регулятора.

С учетом структуры системы определим передаточную функцию ЗСАУ. Для удобства сначала определим WРСАУ(P) с учетом передаточной функции имеющегося регулятора, а потом запишем передаточную функцию ЗСАУ .

 

 

передаточная функция замкнутой системы будет иметь вид:

 

 

(График переходной характеристики приведен в приложении)

 

4.Определение устойчивости ЗСАУ.

 

Составление математической модели системы является важным этапом математического моделирования. Но также не маловажным условием полученной модели является ее устойчивость. Для избежания неблагоприятных последствий во время эксплуатации систем, на стадии моделирования обязательной стадией исследования является исследование модели системы на устойчивость. Для определения устойчивости имеются несколько критериев, названных в честь их создателей: Найквиста, Михайлова, Рауса, Гурвица, Ляпунова. Позднее критерий Гурвица стали называть критерием Рауса – Гурвица, т.к. их способы несколько различаются, но принцип определения идентичен, в обоих случаях для нахождения устойчивости определяется матрица коэффициентов.

В связи с тем, что критерии Найквиста, Михайлова и Ляпунова являются корневыми методами, а мы имеем дело с передаточной функцией 4-го порядка, то для упрощения определения устойчивости воспользуемся критерием Рауса – Гурвица, который не требует нахождения корней.

Теорема Гурвица утверждает, что для того, чтобы действительные части всех корней характеристического уравнения (знаменателя передаточной функции)

 

 

c действительными коэффициентами и b0>0 были отрицательными, необходимо и достаточно, чтобы были положительными все определители D1, D2, ..., Dm, составленные из коэффициентов уравнения по следующей схеме:



2019-12-29 138 Обсуждений (0)
Объект регулирования АПЗ-2 0.00 из 5.00 0 оценок









Обсуждение в статье: Объект регулирования АПЗ-2

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (138)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)