Мегаобучалка Главная | О нас | Обратная связь


Первые лазеры и их устройство



2019-12-29 307 Обсуждений (0)
Первые лазеры и их устройство 0.00 из 5.00 0 оценок




Создание лазера стало возможным после того, как были найдены способы осуществления инверсной на­селенности уровней в некоторых веществах. В по­строенном Мейманом первом лазере рабочим телом был цилиндр из розового рубина. Диаметр стержня был порядка 1 см, длина — около 5 см. Торцы руби­нового стержня были тщательно отполированы и пред­ставляли собой строго параллельные друг другу зер­кала. Один торец покрывался плотным непрозрачным слоем серебра, другой торец покрывался таким слоем серебра, который пропускал около 8 % упавшей на него энергии.

Рубин представляет собой окись алюминия (Al2O3), в которой некоторые из атомов алюминия замещены атомами хрома. При поглощении света ионы хрома Cr3+ (в таком виде хром находится в кристалле ру­бина) переходят в возбужденное состояние. Обратный переход в основное состояние происходит в два этапа. На первом этапе возбужденные ионы отдают часть своей энергии кристаллической решетке и переходят в метастабильное состояние. Переход из метастабильного состояния в основное запрещен правилами от­бора. Поэтому среднее время жизни иона в метастабильном состоянии (~10-3 с) примерно в 105 раз пре­восходит время жизни в обычном возбужденном со­стоянии. На втором этапе ионы из метастабильного состояния переходят в основное[5], излучая фотон с l=694,3 нм. Под действием фотонов такой же длины волны, т. е. при вынужденном излучении, переход ионом хрома из метастабильного состояния в основное происходит значительно быстрее, чем при спонтанном излучении.

 

Рис. 2. Схема лазера на рубине

 

В лазере рубин освещается импульсной ксеноновой лампой (рис.2), которая дает свет с широкой поло­сой частот. При достаточной мощности лампы боль­шинство ионов хрома переводится в возбужденное со­стояние. Процесс сообщения рабочему телу лазера энергии для перевода атомов в возбужденное состоя­ние называется накачкой. На рис. 3 дана схема уровней иона хрома Cr3+ (уровень 3 представляет со­бой полосу, образованную совокупностью близко рас­положенных уровней).

Возбуждение ионов за счет накачки изображено стрелкой W13. Время жизни уровня 3 очень мало (~ 10-8 с). В течение этого времени некоторые ионы перейдут спонтанно из полосы 3 на основной уровень 1. Такие переходы показаны стрелкой A31 . Однако, большинство ионов перейдет на метастабильный уро­вень 2 (вероятность перехода, изображенного стрел­кой S32, значительно больше, чем перехода A31). При достаточной мощности накачки число ионов хрома, находящихся на уровне 2, становится больше числа ионов на уровне 1. Следовательно, возникает инверсия населенностей уровней 1 и 2.

Стрелка А21 изображает спонтанный переход с метастабильного уровня на основной. Излученный при этом фотон может вызвать вынужденное испускание дополнительных фотонов (переход W21), которые в свою очередь вызовут вынужденное излучение, и т. д. В результате образуется каскад фотонов. Напомним, что фотоны, возникающие при вынужденном излуче­нии, летят в том же направлении, что и падающие фо­тоны. Фотоны, направления движения которых образуют малые углы с осью кристаллического стержня, испытывают многократные отражения от торцов об­разца. Поэтому путь их в кристалле будет очень боль­шим, так что каскады фотонов в направлении оси по­лучают особенное развитие. Фотоны, испущенные спонтанно в других направлениях, выходят из кристалла через его боковую поверхность.

 

 


Процесс образования каскада изображен схематически на рис.4. До вспышки лампы ионы хрома находятся в основном состоянии (черные кружки на рис.4а). Свет накачки (сплошные стрелки на рис.4б) переводит большинство ионов в возбужден­ное состояние (светлые кружки). Каскад начинает развиваться, когда возбужденные ионы спонтанно из­лучают фотоны (штриховые стрелки на рис.4в) в направлении, параллельном оси кристалла (фотоны, испущенные по другим направлениям, выходят из кри­сталла). Фотоны размножаются за счет вынужденного излучения. Этот процесс развивается (рис.4г и д),так как фотоны многократно проходят вдоль кристал­ла, отражаясь от его торцов.

 

 

 

Рис. 4. Процесс образования каскада фотонов

 

При каждом отражении от частично прозрачного торца небольшая доля (8 %) светового пучка выходит из кристалла. Поэтому после каждого акта накачки возникает вспышка лазерного излучения, состоящая из ряда импульсов, общая про­должительность которых равна нескольким микросе­кундам. Лазеры на рубине работают в импульсном ре­жиме с частотой порядка нескольких вспышек в ми­нуту.

В 1961 г. Джаваном[6] был создан первый газовый лазер, работающий на смеси гелия и неона. В 1963 г. были созданы первые полупроводниковые лазеры. В настоящее время список лазерных материалов на­считывает много десятков твердых, жидких и газооб­разных веществ. Одни лазеры работают в импульсном, другие—в непрерывном режиме.

Если цилиндрический сосуд наполнить смесью гелия и у неона, внутрь его поместить металлические электро­ды и подать на них высокое напряжение, то смесь газов начнет светиться красноватым светом, почти таким же, как и неоновая реклама (рис. 5).

В стеклянной трубке возникает тлеющий разряд. При этом между атомами газа движется много бы­стрых электронов. Они сталкиваются с атомами ге­лия и возбуждают их. Электроны сталкиваются с неоном, но, как правило, возбуждают только низ­колежащие уровни неона. Возбужденные атомы ге­лия, сталкиваясь с атомами неона, отдают им свою энергию и возбуждают их высокие уровни. С этих высоких уровней атом неона переходит в промежу­точное состояние Е1. Если теперь у торцов сосуда с гелий-неоновой смесью установить такие же зерка­ла, как и у торцов рубинового лазера, то фотон с энергией Е1 — Е2, испущенный параллельно оси со­суда, вызовет лазерное излучение. В газовом лазере число возбужденных атомов неона и гелия непре­рывно пополняется. Поэтому гелий-неоновый лазер излучает свет непрерывно.

Очень интересен лазер с жидким излучающим телом. Мы уже знаем, что главную роль в излу­чающем теле рубинового лазера играют атомы хрома.

     
Рис. 5. Гелий-неоновый лазер: а - схема лазера на смеси гелия и неона; б - схема энергетических уровней гелия и неона.
 
На рисунке показаны только уровни, участвующие в генерации видимого излучения газового лазера. На самом деле схема уровней и неона, и гелия сложнее.

 


а

 

б

 

Существуют лазеры, у которых стержень не из рубина, а из стекла, а стекло, как известно, пере­охлажденная жидкость. Роль атомов хрома играют добавленные в стекло атомы редкоземельного эле­мента неодима. Но так как атомы неодима находят­ся в жидкости, они будут свободнее передвигаться и очень часто сталкиваться с атомами жидкости-растворителя. При этих столкновениях возбужден­ные атомы неодима будут отдавать свою энергию атомам растворителя, и она будет переходить в теп­ло. Не поможет и то, что электроны, переход ко­торых с орбиты на орбиту сопровождается испу­сканием фотонов, лежат на большой глубине элек­тронного облака, окружающего атом неодима. Нужно было как-то защитить этот активный атом от снующих вокруг него атомов растворителя. Но как?

Эту задачу решили химики. Они заключили ион неодима в атомную кольчугу (рис. 6). Было полу­чено такое химическое соединение, в котором ион неодима находится среди связанных с ним атомов кислорода, а они в свою очередь связаны со слож­ными органическими группами атомов — лиган­дами. Таким образом, атом неодима оказался за­щищенным от столкновений с атомами растворите­ля и стал вести себя так, как если бы он находился в кристаллической решетке твердого тела. Но лиганды не ограничиваются ролью защитников нео­дима. Они обладают еще замечательным свойством: поглощая излучение в широких областях спектра, лиганд возбуждается и при этом либо сразу пере­ходит в основное состояние, либо долго остается в возбужденном состоянии. В первом случае испущен­ный лигандом фотон будет бесполезным для лазер­ного луча. Из метастабильного состояния лиганд передает свою энергию атому неодима и таким об­разом участвует в оптической накачке активных ионов неодима. Каскад фотонов в таком лазере воз­никает обычным путем, так же как и в других ти­пах лазеров.

 

 

 

Световой телеграф

Ценность лазерного луча не только в его необычай­ной яркости, но еще более в его монохроматично­сти, когерентности. Только благодаря этим свойст­вам получают голограммы, а в будущем по лазер­ному лучу будут передавать радиопрограммы и программы телевидения.

Чтобы понять, в чем же состоят достоинства ла­зера как передатчика информации, рассмотрим ли­нию связи, изображенную на рисунке 7.

 

Рис. 7. Шариковый телеграф. Чем выше частота поступлений шариков с одного берега на другой, тем большее количество информации передается с берега на берег.

 

Рис. 8

 

Непрерывно катятся по желобу одинаковые ша­рики. Число шариков, проходящих с левого берега реки на правый в единицу времени, частота их по­явления неизменны. Пересчитывая шарики, мы мо­жем сказать, как долго они падали из желоба, и только. Чтобы передать с помощью такого устрой­ства какое-либо сообщение, нужно пометить шари­ки, например, буквами алфавита и отправлять, и принимать их в определенном порядке. Тогда ко­личество информации (в нашем случае число букв), передаваемое за определенное время, будет пропорционально частоте появления шариков из желоба.

«Неискаженная» синусоида лазерного света по­добна чистым шарикам. Зарегистрировав синусои­дальное излучение каким-либо приемником, мы лишь узнаем, что включен передатчик, а также смо­жем установить направление его излучения. На си­нусоиде, как и на шариках, необходимо сделать метки, чтобы передать более существенные данные. Оказывается, эффективно можно пометить только когерентный монохроматический луч. Такой луч служит как бы чистым листом бумаги, на котором записывается информация. Нанести «метки» можно, модулируя луч, т. е. меняя амплитуду или частоту колебаний (рис. 8). Тогда передаваемые данные бу­дут закодированы в «узорах», нанесенных на сину­соиду. Чем меньше времени потребует передача «узора», тем более емким является канал связи. А это время, как видно на рисунке, обратно про­порционально частоте излучения. Значит, чем выше частота колебаний, тем большее количество инфор­мации можно передать за единицу времени. Часто­та электромагнитных колебаний излучения рубино­вого лазера 430 ТГц (4,3 • 1014 Гц) — в миллион раз превосходит частоту, на которой работает телевиде­ние в наше время. Поэтому в принципе один лазер­ный луч способен транслировать миллионы телеви­зионных программ и миллиарды радиопередач. Однако ученые еще не смогли найти способ эффектив­ной модуляции колебаний столь высокой частоты. По аналогии с нашим шариковым телеграфом мож­но сказать, что поток лазерных шариков так быстр, что далеко не все из них удается пометить.

Потоки лазерного излучения находят множество других применений. С их помощью осуществляют тончайшие хирургические операции, измеряют рас­стояния, управляют химическими процессами, полу­чают нагретую до высокой температуры плазму, ис­следуют строение атома.


Заключение

Лазеры имеют многочисленные применения. Она используются в технике для сварки, резки, и плавле­ния металлов; в медицине - как бескровные скаль­пели, при лечении глазных и кожных болезней. Ла­зерная локация позволила измерить скорость враще­ния планет, уточнить характеристики движения Луны и планеты Венера. Лазеры используются также в различных приборах для тонких физических исследо­ваний. Наконец, применяя лазеры для нагрева плаз­мы, пытаются с их помощью решить проблему управ­ляемого термоядерного синтеза.

 


Список использованной литературы

 

1. Ахматова А.С., «Физика, часть2. Оптика и волны», М., 1973г., изд. «Наука».

2. Громов С.В., «Физика 11», 3 издание, М., 2002г., изд. «Просвещение».

3. «Детская энциклопедия» Т.3 «Вещество и энергия», издание 3, М., 1973г., изд. «Педагогика».

4. Мякишев Г.Я., Синяков А.З., Учебник для углубленного изучения физики «Оптика. Квантовая физика», М., 2002г., изд. «Дрофа».

 

 


[1]) Николай Геннадиевич Басов (род. 1922) — советский физик.

 

[2]) Александр Михайлович Прохоров (род. 1916) — советский физик.

 

[3]) Чарлз Хард Таунс (род. 1915) — американский физик.

 

[4]) Теодор Гарольд Мейман, (род. 1927) — американский физик.

 

[5]) Правила отбора не являются абсолютно строгими. Ве­роятность запрещенных переходов значительно меньше, чем разрешенных, но все же отлична от нуля.

 

[6]) Али Джаван (род. 1926)—американский физик» Родился в Тегеране, В 1948 г, переехал в США.

 



2019-12-29 307 Обсуждений (0)
Первые лазеры и их устройство 0.00 из 5.00 0 оценок









Обсуждение в статье: Первые лазеры и их устройство

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (307)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)