Мегаобучалка Главная | О нас | Обратная связь


Наследственность и среда.



2019-12-29 342 Обсуждений (0)
Наследственность и среда. 0.00 из 5.00 0 оценок




Реферат

На Тему: «Основы генетики.»

Подготовила: Пехтерева Г.А. Ученица 12 класса УКП

Проверила: Поликарпова Н.П.

Заокск 2007г.

 

 

Наследственность, представления о генетическом коде, гены индивидуальности.

Оглавление

Аннотация ....................................................................................................... 3

Предисловие ..................................................................................................... 4

Наследственность .............................................................................................. 6

Условные рефлексы ........................................................................................... 7

Теория наследственности Вейсмана .................................................................... 8

Методы Гальтона ......................................................................................... 9

Хромосомная теория наследственности ........................................................ 10

Генетические карты хромосом ...................................................................... 10

Генетика пола ................................................................................................ 13

Нехромосомная теория наследственности .................................................... 14

Молекулярная генетика. Генетическая информация. Генетический код ....... 15

Наследственность и эволюция ....................................................................... 17

Генетика человека ......................................................................................... 19

Наследственность и среда.......................................................................... 20

Болезни, связанные с мутациями................................................................ 22

Лечение и профилактика наследственных болезней................................... 24

Генетическая инженерия............................................................................ 26

Гены индивидуальности .................................................................................... 28

Заключение ........................................................................................................ 30

Терминологический словарь .................................................................................. 32

Список используемой литературы ......................................................................... 35

Аннотация

В своей курсовой работе на тему " Наследственность. Представления о генетическом коде. Гены индивидуальности " я рассказала о первых шагах генетики, о сегодняшнем дне этой увлекательной науки и о том, чего ждем мы от нее в ближайшем будущем. Также подробно были рассмотрены достижения современной гене­тики на молекулярном уровне, которая включает в себя биологию и генетику, законы передачи наследственных признаков и структуру генетического вещества, структуру и функции гена, гены и согласованность клеточных функций, наследственность и эволюцию. В этой работе ведется ознакомление с огромным вкладом ге­нетики в соседние с ней области биологии — учение о происхождении жизни, систе­матику и эволюцию организмов.

Предисловие

Испокон веков человек стремился узнать, почему от живых организмов рождаются им подобные? И при этом не отмечается абсолютной схожести родителей и потомства ни в физических признаках, ни в характере.

Теперь очевидно, что схожесть родителей и потомков организмов одного вида определяется наследственностью, а их отличительные особенности - изменчивостью. Два свойства - наследственность и изменчивость - характерны не только для человека, но и для всего живого на Земле. Изучением этих важнейших свойств живых су­ществ занимается наука, называемая генетикой.

Конечно, на первый взгляд кажется, что все мы можем совершенно спокойно жить, не зная сущности секретов наследственности, и что все это неважно. Но так ли это на самом деле?

Как, не зная генетики, объяснить, почему обезьяна не превращается в белого медведя, если даже поселить ее на Крайнем Севере, и почему белый медведь, даже если он родился в зоопарке где-нибудь на юге, все равно остается белым? Сумеют ли работники сельского хозяйства в ближайшем будущем получать с каждого гектара сотни центнеров пшеницы? Скажутся через какие-нибудь 50-100 лет последствия атомных взрывов на потомках современных жителей Хиросимы и Нагасаки? Отчего дети похожи на своих родителей? Грозит ли человечеству вымирание, или мы находимся у начала развития земной цивилизации? Почему без вмешательства человека рожь остается рожью, а пшеница - пшеницей? Каковы причины наследственных забо­леваний и как с ними бороться? Сколько способен прожить человек? Могут ли все люди на Земле быть гениями?

Есть еще тысячи и тысячи подобных вопросов, имеющих очень важное значение как для отдельных людей, так и для всего человечества, ответить на которые нельзя, не познав секреты наследственности и не научившись управлять ею. Когда же человек раскроет все эти тайны и поставит знания себе на пользу, он сможет участвовать в решении практических задач сельского хозяйства, медицины, научится управлять эволюцией жизни на нашей планете в целом.

Вместе с тем не надо забывать, что для духовной жизни и целенаправленной деятельности современного человека исключительно важное значение приобретает научное мировоззрение. Среди философских вопросов нового естествознания один из главных — понимание сущности жизни, ее места в мироздании. И только современная молекулярная генетика сумела показать, что жизнь - это поистине матери­альное, саморазвивающееся явление, отражающее влияние условий внешней среды.    Но она также доказала, что жизнь обладает системностью, которую невоз­можно разложить на составляющие ее физико-химические процессы. Однако, со­временная наука еще не знает полностью сущности жизни.

Еще один вопрос: от чего зависит настоящее и будущее человечества? Пробле­ма эта интересовала людей много веков назад и в не меньшей степени волнует се­годня. Это и не удивительно, так как человек отличается от всего окружающего мира в первую очередь тем, что испытывает влияние не только биологических законов. Будущее его не в меньшей, если не в большей степени зависит от социального переустройства мира.

Наследственная информация человека передается от поколения к поколению. Все биологические особенности, послужившие основой для появления человека, обладающего сознанием, закодированы в наследственных структурах, и их пере­дача по поколениям является обязательным условием для существования на Земле человека как разумного существа. Человек как биологический вид — это самое высокое и при этом уникальное " достижение " эволюции на нашей планете. И пока еще ни­кто не может сказать с уверенностью или представить неопровержимые доказательст­ва того, что это не касается всей Вселенной.

Эволюция на Земле то идет медленно, то претерпевает скачки, каждый из которых возносит данную ветвь организмов на новый уровень. Среди многих скачков революций в истории жизни на Земле два, по-видимому, следует считать основными. Во-первых, переход от неорганического мира к органическому, то есть появле­ние жизни, и во-вторых, возникновение сознания, то есть появление человека. Оба эти явления связа­ны с накоплением количественных изменений, вызвавших изменения качественные.

 

" Как бы человечество ни ушло по пути прогресса, наш хх в. навсегда останется в его памяти. Люди всегда будут помнить, что этот век был отмечен тремя важнейшими дос­тижениями; люди научились использовать энергию атома, вышли в космос и стали на­правленно изменять наследственность. Вот три великих успеха, которые наши отдален­ные потомки будут помнить даже тогда, когда станут летать от звезды к звезде и победят старость и смерть."1

Но если перспективы ядерной физики преподаются в школе, если космонавтов благодаря телевидению мы знаем в лицо, с биологией дело обстоит хуже. Величайшие ее достижения еще не стали известными широким массам.

Основы генетики были заложены чешским ученым Грегором Менделем в эксперементах, результаты которых были опубликованы в 1865 г. С тех пор генетика не остано­вилась в своем развитии. И. М. Сеченов, А. П. Богданов, Н. К. Кольцов, Г. Шаде, Эвери, Мак-Леод, Мак-Карти, Д. Уотсон - вот одни из тех великих ученых, которые внесли ог­ромный вклад в науку о наследственности.

В последние годы на фоне общего снижения заболеваемости и смертности увеличил­ся удельный вес врожденных и наследственных болезней. В связи с этим роль генетики в практической медицине значительно возросла. " Без знания генетики нельзя эффективно проводить диагностику наследственных и врожденных заболеваний."2

 Наследственность- присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловлено передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым наследственность обеспечивает преемственность морфологической, физиологической и биохимической организации жи­вых существ, характера их индивидуального развития, или онтогенеза. Как общебиологическое явление наследственность - важнейшее условие существования дифференцированных форм жизни, признаков организмов, хотя оно нарушается изменчивостью- возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, наследственность проявляется в закономерностях наследования признаков, т.е. передачи их от родителей потомкам.

1. А. А. Богданов, Б. М. Медников "Власть над геном", Москва "Просвещение" 1989 г.,   2. В. А. Орехова, Т. А. Лашковская, М. П. Шейбак "Медицинская генетика", Минск, 1997 г.

Иногда термин наследственность относят к передаче от одного поколения другому инфекционных начал (т.н. инфекционная наследственность) или навыков обучения, обра­зования, традиций (т.н. социальная, или сигнальная наследственность). Подобное расширение понятия наследственность за пределы его биологической и эволюционной сущности спорно. Лишь в случаях, когда инфекционные агенты способны взаимодействовать с клетками хозяина вплоть до включения в их генетический аппарат, отделить инфекционную наследствен­ность от нормальной затруднительно.

Условные рефлексы. Как мы знаем, условные рефлексы - это индивидуально приобретенные сложные приспособительные реакции организма животных и человека, возни­кающие при определенных условиях (отсюда название) на основе образования времен­ной связи между условным (сигнальным) раздражителем и подкрепляющим этот раздра­житель безусловно - рефлекторным актом. Условные рефлексы не наследуются, а заново вырабатываются каждым поколением, однако роль наследственности в скорости закреп­ления условных рефлексов и особенностей поведения бесспорна. Поэтому в сигнальную наследственность входит компонент биологической наследственности.

Попытки объяснения явлений наследственности, относящиеся к глубокой древности (Гиппократ, Аристотель и др.), представляют лишь исторический интерес. Только вскрытие сущности полового размножения позволило уточнить понятие наследственности и связать ее с определенными частями клетки. К середине 19 в. благодаря многочис­ленным опытам по гибридизации растений (И. Г. Кельрейтер и др.) накапливаются данные о закономерностях наследственности. В 1865 году Г. Мендель в ясной математиче­ской форме сообщил результаты своих экспериментов по гибридизации гороха. Эти со­общения позднее получили название законов Менделя и легли в основу учения о наследственности - менделизма, почти одновременно были сделаны попытки умозрительно по­нять сущность наследственности. В книге "Изменения домашних животных и культур­ных растений" Ч. Дарвин (1868 г.) предложил свою "временную гипотезу пангенезиса", согласно которой от всех клеток организма отделяются их зачатки-геммулы, которые, двигаясь с током крови, оседают в половых клетках и образованиях, служащих для бес­полого размножения (почки и др.) . Таким образом, получалось, что половые клетки и почки состоят из громадного количества геммул. При развитии организма геммулы пре­вращаются в клетки того же типа, из которых они образовались. В гипотезе пангенезиса объединены неравноценные

представления: о наличии в половых клетках особых частиц, определяющих последующее развитие особи; о переносе их из клеток тела в половые. Первое положение было плодотворным и привело к современным представлениям о корпускулярной наследственности . Второе, давшее основание для представления о наследо­вании приобретенных признаков, оказалось неверным. Умозрительные теории наследст­венности развивали также Ф. Гальтон, К. Негели, Х. Де Фриз.

Наиболее детализированную спекулятивную теорию наследственности предложил А. Вейсман (1892). Основываясь на накопившихся к тому времени данных по оплодо творению, он признавал наличие в половых клетках особого вещества - носителя наследственности - зародышевой плазмы. Видимые образования клеточного ядра хромосомы - Вейсман считал высшими единицами зародышевой плазмы -идантами. Иданты состоят из ид, располагающихся в хромосоме в виде зерен в линейном порядке. Иды состоят из детерминат, определяющих при развитии особи сорт клеток, и биофор, обусловливаю­щих отдельные свойства клеток. Ида заключает в себе все детерминаты, нужные для по­строения тела особи данного вида. Зародышевая плазма содержится лишь в половых клетках; соматические, или клетки тела, лишены ее. Чтобы объяснить это коренное раз­личие, Вейсман предполагал, что в процессе дробления оплодотворенного яйца основ­ной запас зародышевой плазмы (а значит, и детерминат) попадает в одну из первых кле­ток дробления, которая становится родоначальной клеткой так называемого зародышево­ го пути. В остальные клетки зародыша в процессе "неравнонаследственных делений" попадает лишь часть детерминат; наконец, в клетках останутся детерминаты сорта, определяющие характер и свойства именно этих клеток. Существенное свойство за­родышевой плазмы ее большое постоянство. Теория Вейсмана оказалась ошибочной во многих деталях. Однако его идея о роли хромосом и о линейном расположении в них элементарных единиц наследственности оказалась верной и предвосхитила хромосомную теорию наследственности. Логический вывод из теории Вейсмана-отрицание насле­дования приобретенных признаков. Во всех умозрительных теориях наследственности можно обнаружить отдельные элементы, нашедшие в дальнейшем подтверждение и более полное развитие в сложившейся в начале 20 в. генетике. Важнейшие из них:

а) выделение в организме отдельных признаков или свойств, наследование которых может быть проанализировано соответствующими методами;

б) детерминация этих свойств особыми дискретными единицами наследственности, локализованными в структурах клетки (ядра) (Дарвин называл их геммулами, Де Фризпангенами, Вейсман - детерминатами). В современной генетике общепринятым стал предложенный В. Иогансеном (1909) термин ген.

" Ген - элементарная единица наследственности, представляющая отрезок молекулы дезоксирибонуклеиновой кислоты - ДНК (у некоторых вирусов - рибонуклеиновой кислоты - РНК). Каждый ген определяет строение одного из белков живой клетки и тем самым участвует в формировании признака или свойств организма. "3

3. Каменский А. А., Соколова Н. А. ,Титов С. А. "Биология" , м., 1997 г.

 

Методы Гальтона. Особняком стояли попытки установления закономерностей наследственности статистическими методами. Один из создателей биометрии - Ф. Гальтон применил разработанные им методы учета корреляции и регрессии для установления связи между родителями и потомками. Он сформулировал следующие законы наследст­венности (1889):

- регрессии, или возврата к предкам

- анцестральной наследственности, то есть доли наследственности предков в наследственности потомков.

Законы носят статистический характер, они применимы лишь к совокупностям организмов и не раскрывают сущности и причин наследственности, что могло быть достигнуто только с помощью экспериментального изучения наследственности разными методами и прежде всего гибридологическим анализом, основы которого были заложены еще Менде­лем. Так были установлены закономерности наследования качественных признаков: мо­ногибридное - различие между скрещиваемыми формами зависит лишь от одной пары ге­нов, дигибридное - от двух , полигибридное- от многих. При анализе наследования коли­чественных признаков отсутствовала четкая картина расщепления, что давало повод вы­делять особую, так называемую слитную наследственность и объяснять ее смещением наследственных плазм скрещиваемых форм. В дальнейшем гибридологический и био­метрический анализ наследования количественных признаков показал, что и слитная на­следственность сводится к дискретной, но наследование при этом полигенное. В этом случае расщепление трудно обнаружить, так как оно происходит по многим генам, действие которых на признак осложняется сильным влиянием условий внешней Среды. Таким образом, хотя признаки можно разделять на качественные и количественные, термины "качественная" и "количественная" наследственность не оправданы, так как обе категории наследственности принципиально одинаковы.

 

 

Развитие цитологии привело к постановке вопроса о материальных основах наследственности. Впервые мысль о роли ядра как носителя наследственности была сформулирована О. Гертвигом (1884) и Э. Страсбургером(1884)на основании изучения процесса оплодотворения. Т. Бовери (1887) установил индивидуальность хромосом и развил гипотезу о их качественном различии. Он же, а также Э. ван Бенедет (1883) установили уменьшение количества хромосом вдвое при образовании половых клеток в мейозе. Американский ученый У. Сетгон (1902) дал цитологическое объяснение закону Менделя о независимом наследовании признаков. Однако подлинное обоснование хромосомной теории наслед­ ственности было дано в работах Т. Моргана и его школы (начиная с 1911), в которых было показано точное соответствие между генетическими и цитологическими данными. В опытах на дрозофиле было установлено нарушение? независимого распределения признаков - их сцепленное наследование. Это явление было объяснено сцеплением генов, то есть нахождением генов, определяющих эти признаки, в одной определенной паре хромосом. Изучение частоты рекомбинаций между сцепленными генами (в результате кроссинговера) позволило составить карты расположения генов в хромосомах.

Генетические карты хромосом - схемы относительного расположения сцепленных между собой наследств, факторов — генов. Генетические карты хромосом отображают реально существующий линейный порядок размещения генов в хромосомах и важны как в теоретических исследованиях, так и при проведении селекционной работы, т. к. позволяют сознательно подбирать пары признаков при скрещиваниях, а также предсказывать особенности наследования и проявления различных признаков у изучаемых организмов. Имея Ге­нетические карты хромосом, можно по наследованию «сигнального» гена, тесно сцеп­ленного с изучаемым, контролировать, передачу потомству генов, обусловливающих раз­витие трудно анализируемых признаков; напр., ген, определяющий сморщенный эндос­перм у кукурузы и находящийся в 9-й хромосоме, сцеплен с геном, определяющим пони­женную жизнеспособность растения. Многочисленные факты отсутствия (вопреки зако­нам Менделя) независимого распределения признаков у гибридов второго поколения были объяснены хромосомной теорией наследствен­ности. Гены, расположенные в одной хромосоме, в большинстве случаев наследуются сов­местно и образуют одну группу сцепления, количество которых, таким образом, соответству­ет у каждого организма гаплоидному числу хромосом. Американский генетик Т. X. Морган показал, однако, что сцепление генов, расположенных в одной хромосоме, у диплоидных организмов не абсолютное; в некоторых случаях перед образованием половых клеток между однотипными, или гомологичными, хромосомами происходит обмен соответственными участками; этот процесс носит название перекреста, или кроссинговера. Обмен участками хромосом (с находящимися в них генами) происходит с различной вероятностью, зависящей от расстояния между ними (чем дальше друг от друга гены, тем

позволяет обнаружить перекрест только при различии го­мологичных хромосом по составу генов, что при кроссинговере приводит к появлению новых генных комбинаций. Обычно расстояние между генами на Генетических картах хро­мосом выражают как процент кроссинговера (отношение числа мутантных особей, отли­чающихся от родителей иным сочетанием генов, к общему кол-ву изученных особей); еди­ница этого расстояния — морганида — соответствует частоте кроссинговера в 1 %. Итак, выделим основные положения хромосомной теории наследственности:

1. Гены располагаются в хромосомах, различные хромосомы содержат неодинаковое число генов, набор генов каждой из негомологичных хромосом уникален.

2. Гены в хромосоме расположены линейно, каждый ген занимает в хромосоме оп­ределенный локус (место).

3. Гены, расположенные в одной хромосоме, образуют группу сцепления и вместе (сцеплено) передаются потомкам, число групп сцепления равно гаплоидному набору хромосом.

 4. Сцепление не абсолютно, так как в профазе мейоза может происходить кроссинговер и гены, находящиеся в одной хромосоме, разобщаются. Сила сцепления зависит от расстояния между генами в хромосоме: чем больше расстояние, тем меньше сила сцепле-ния1 и наоборот. Расстояние между генами измеряется в процентах кроссинговера. 1% кроссинговера соответствует одной морганиде.4

Генетические карты хромосом составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют последовательно, по мере их обнаружения. Кроме номера группы сцепления, указывают полные или сокращённые назв. мутантных генов, их рас­стояния в морганидах от одного из концов хромосомы, принятого за нулевую точку, а так­же место центромеры. Составить Генетические карты хромосом можно только для объек­тов, у которых изучено большое число мутантных генов. Например, у дрозофилы иденти­фицировано свыше 500 генов, локализованных в её 4 группах сцепления, у кукурузы — около 400 генов, распределённых в 10 группах сцепления (рис. 1). У менее изученных объ­ектов число обнаруженных групп сцепления

меньше гаплоидного числа хромосом. Так, у домовой мыши выявлено около 200 генов, об­разующих 15 групп сцепления (на самом деле их 20); у кур изучено пока всего 8 из 39. У

 

4. В. А. Орехова, Т. А. Лашковская, М. П. Шейбак "Медицинская генетика", Минск, 1997 г.

 

 


Схема мейоза.

 


Схема расщепления по признаку пола.


 

человека из ожидаемых 23 групп сцепления (23 пары хромосом) идентифицирова­но только 10, причём в каж­дой группе известно неболь­шое число генов; наиболее подробные карты составлены


Модели генетического кода: 1-й тип — перекрывающийся код беззапятых; 2-й тип — неперекрывающийся код без за пятых; З-й тип — код с «промежутками», т.е. код с заняты».

 


 

. -«*

 


Рис. 2. Генетическая карта хромосомы кишечной палочки. Цифры означает время, необхо­димое для переноса в клегку-реципиент генетнчесих маркёров, контролирующих: биосинтез ряда аминокислот, а также устойчивостьсть к стрептомицину и к Фагу Г,; эта цифры характеризуют расстояние между генами. Обозначения: adt — аденин; hit — гистиднн: try — триптофан: gat — галактоза; ( or — лактоза: pro — пролин: ten — дейцин; tfe — треонин; TRtff иетионнн; игр — аргинин'. mt — маннит; ryl — ксилоза: mol — мальтоза; itr — сернв; giy — гляпип: ttr н Т, — ус­тойчивость к стрептомицину или фагу Т,.


для половых хромосом. У бактерий, которые являют­ся гаплоидными организ­мами, имеется одна, чаще всего непрерывная, коль-

Pin . 1. Генетические карты 7—10-и хромосом кукурузы*Цифры по длине хромосомом

оботачают расстояние от       кон­ца хромосомы в морганндах: буквы — сокращённые названия признаков,   определяемых соответствующими генами .

цевая хромосома и все гены образуют одну группу сцеп­ления (рис. 2). При переносе генетич. материала из клет­ки- донора в клетку-реципиент, например при конъюга-

ции, кольцевая хромосома разрывается и образующаяся линейная структура переносится из одной бактериальной клетки в другую (у кишечной палочки в течение 110-120 мин). Искусственно прерывая процесс конъюгации, можно по возникшим типам рекомбинантов установить, какие гены успели перейти в клетку-реципиент. В этом состоит один из методов построения Генетических карт хромосом бактерий, детально разработанных у ряда видов. Ещё более детализированы Генетические карты хромосом некоторых бакте­ риофагов.

Генетика пола. Количество групп сцепленных генов оказалось равным количеству пар хромосом, присущих данному виду. Важнейшие доказательства хромосомной теории наследственности были получены при изучении наследования, сцепленного с полом. Ранее цитологи открыли в хромосомных наборах ряда видов животных особые, так называе­мые половые хромосомы, которыми самки отличаются от самцов. В одних

других - самцы-2 одинаковые (ХХ, или ZZ), а самки – разные (ХУ, или ZW). Пол с одинаковыми половыми хромосомами называется гомогаметным, с разными - гетерогаметным. Женский пол гомогаметен, а мужской гетерогаметен у некоторых насекомых ( в том числе у дрозофи­лы) и всех млекопитающих. Обратное соотношение - у птиц и бабочек. Ряд признаков у дрозофилы наследуется в строгом соответствии с передачей потомству Х-хромосом. Самка дрозофилы, проявляющая рецессивный признак, например белую окраску глаз, в силу гомозигогности по этому гену, находящемуся в Х-хромосоме, передает белую окраску глаз всем сыновьям, так как они получают свою Х-хромосому только от матери. В случае гетерозиготности по рецессивно­му сцепленному с полом признаку самка передает его половине сыновей. При противопо­ложном определении пола (самцы XX, или ZZ; самки-XY, или ZW) особи мужского пола передают сцепленные с полом признаки дочерям, получающим свою Х ( =Z) хромосому от отца. Иногда в результате нерасхождения половых хромосом при мейозе возникают самки строения XXY и самцы XYY. Возможны также случаи соединения Х-хромосом концами; тогда самки передают сцепленные Х-хромосомы своим дочерям, у которых и проявляются сцепленные с полом признаки. Сыновья же похожи на отцов (такое наследование называ­ется гологеническим). Если наследуемые гены находятся в Y-хромосоме, то определяе­мые ими признаки передаются только по мужской линии - от отца к сыну (такое наследо­вание называется голандрическим). Хромосомная теория наследственности вскрыла внутриклеточные механизмы наследственности, дала точное и единое объяснение всех яв­лений наследования при половом размножении, объяснила сущность изменений наследст­венности, то есть изменчивости.

Нехромосомная теория наследственности. Первенствующая роль ядра и хромо­сом в наследственности не исключает передачи некоторых признаков и через цитоплаз­му, в которой обнаружены структуры, способные к самовоспроизведению. Единицы цитоплазматической (нехромосомной) наследственности отличаются от хромосомных тем, что они не расходятся при мейозе. Поэтому потомство при нехромосомной наследственности воспроизводит признаки только одного из родителей (чаще матери). Таким обра­зом, различают ядерную наследственность, связанную с передачей наследственных признаков, находящихся в хромосомах ядра (иногда ее называют хромосомной наследст­венностью), и внеядерную наследственность, зависящую от передачи самовоспроизво­дящихся структур цитоплазмы. Ядерная наследственность реализуется и при вегета­ тивном размножении, но не сопровождается

перераспределением генов, что наблюдает­ся при половом размножении, а обеспечивает константную передачу признаков из поко­ления в поколение, нарушаемую только соматическими мутациями.

  Молекулярная генетика. Применение новых физических и химических методов, а также использование в качестве объектов исследования бактерий и вирусов резко повысили разрешающую способность генетических экспериментов, привели к изучению на­следственности на молекулярном уровне и бурному развитию молекулярной генетики. Впервые Н. К. Кольцов (1927 г) выдвинул и обосновал представления о молекулярной основе наследственности и о матричном способе размножения "наследственных молекул".В 40-х гг. 20 в. была экспериментально доказана генетическая роль дизоксирибонуклеиновой кислоты (ДНК ) , а в 50-60-х гг. установлена ее молекулярная структура и выяснены принципы кодирования генетической информации. Генетическая информа­ ция, заложенная в наследственных структурах организмов (в хромосомах, цитоплазме, кле­точных организмах), получаемая от предков в виде совокупности генов информация о со­ставе, строении и характере обмена составляющих организм веществ (прежде всего белков и нуклеиновых кислот) и связанных с ними функциях. У многоклеточных форм при по­ловом размножении генетическая информация передаётся из поколения в поколение через посредство половых клеток — гамет, единственная функция которых — передача и хранение генетической информации. У микроорганизмов и вирусов имеются особые типы ее переда­чи. Генетическая информация заключена преимущественно в хромосомах, где она зашиф­рована в определённой линейной последовательности нуклеотидов в молекулах дезоксирибонуклеиновой кислоты — ДНК (генетический код). Генетический код - это система за­шифровки наследственной информации в молекулах нуклеиновых кислот, реализующаяся у животных, растений, бактерий и вирусов в виде последовательности нуклеотидов. В природных необычных Сахаров. Так как количе­ство кодирующих знаков Генетического кода (4) и число разновидностей аминокислот в белке (20) не совпадают, кодовое число (т. е. кол-во нуклеотидов, кодирующих 1 аминокис­лоту) не может быть равно 1. Различных сочетаний по 2 нуклеотида возможно лишь 42 = 16, но этого также недостаточно для зашифровки всех аминокислот. Американский учёный Г. Гамов предложил (1954) модель триплетного генетического кода, т. е. такого, в ко­тором 1 аминокислоту кодирует группа из трёх нуклеотидов, называемых кодоном. Число возможных триплетов равно 43 = 64, а это более чем втрое превышает число

распростра­нённых аминокислот, в связи с чем было высказано предположение, что каждой аминокис­лоте соответствует несколько кодонов (так называемая вырожденность кода). Было пред­ложено много различных моделей генетического кода, из которых серьёзного внимания за­служивали три модели (см. рис.): перекрывающийся код без запятых, неперекрывающийся код без запятых и код с запятыми. В 1961 Ф. Крик (Великобритания) с сотрудниками полу­чил подтверждение гипотезы триплетного неперекрывающегося кода без запятых. Уста­новлены следующие основные закономерности, касающиеся генетического кода:

1) между последова­тельностью нуклеотидов и кодируемой последовательностью аминокислот существует ли­нейное соответствие (коллинеарность генетического кода);

2) считывание кода начинается с определённой точки;

3) считывание идёт в одном направлении в пределах одного гена;

4) код является неперекрывающимся;

5) при считывании не бывает промежутков (код без за­пятых);

6) генетический код, как правило, является вырожденным, т. е. 1 аминокислоту ко­дируют 2 и более триплетов-синонимов (вырожденность генетического кода уменьшает вероятность того, что мутационная замена основания в триплете приведёт к ошибке);

7) кодовое число равно трём;

8) код в живой природе уни­версален (за некоторыми ис­ключениями). Универсальность генетического кода подтверждается эксперимен­тами по синтезу белка in vit г o . Если в бесклеточную систему, полученную из од­ного организма (например, кишечной палочки), добавить нуклеинокислотную матрицу, полученную из другого организма, далеко отстоящего от первого в эволюционном отношении (например, проростков гороха), то в такой системе будет идти белковый синтез. Благодаря работам американских генетиков М. Ниренберга, С. Очоа, X. Корана известен не только состав, но и порядок нуклеотидов во всех кодонах.

Из 64 кодонов у бактерий и фагов 3 кодона — УАА, УАГ и УГА — не кодируют аминокислот; они служат сигналом к освобождению полипептидной цепи с рибосомы, т. е. сиг­нализируют о завершении синтеза полипептида. Их наз. терминирующими кодонами. Существуют также 3 сигнала о начале синтеза — это т. н. инициирующие колоны — АУТ, ГУГ и УУГ,— которые, будучи включёнными в начале соответствующей информационной РНК (и - РНК), определяют включение формилметионина в первое положение синтезируе­мой полипептидной цепи. Приведённые

Полный «словарь» генетического кода

Для аминокислот

 

 

 

данные справедливы для бактериальных систем; для высших организмов многое ещё не ясно. Так, кодон УГА у высших организмов может быть значащим; не совсем понятен также механизм инициации полипептида.

*В начале цепи и-РНК данный кодон определяет начало синтеза полепепидной цепи и кодирует аминокислоту формилметионин. От готовых полиплоидных цепей формильная группа или вся аминокислота может быть отщеплена с помощью соответствующих ферментов.

Реализация генетического кода в клетке происходит в два этапа. Первый из них про­текает в ядре; он носит назв. транскрипции и заключается в синтезе молекул и - РНК на соответствующих участках ДНК. При этом последовательность нуклеотидов ДНК «переписывается » в нуклеотидную последовательность РНК. Второй этап — трансляция — протекает в цитоплазме, на рибосомах; при этом последовательность нуклеотидов и - РНК пе­реводится в последовательность аминокислот в белке; этот этап протекает при участии транспортной РНК (т - РНК) и соответствующих ферментов. Генетическая информация реализуется в ходе онтогенеза — развития особи — ее передачей от гена к признаку. Все клетки организма возникают в результате делений единственной исходной клетки — зиготы — и потому имеют один и тот же набор генов — потенциально одну и ту же генетическую информацию. Специфичность клеток разных тканей определя­ется тем, что в них активны разные гены, т. е. реализуется не вся информация, а только её часть, необходимая для функционирования данной ткани.

По мере изучения наследственности на субклеточном и молекулярном уровне углублялось и уточнялось представление о гене. Если в опытах по наследованию различных при­знаков ген постулировался как элементарная неделимая единица наследственности, а в свете данных цитологии его рассматривали как изолированный участок хромосомы, то на молекулярном уровне ген-входящий в состав хромосомы участок молекулы ДНК , спо­собный к самовоспроизведению и имеющий специфическую структуру, в которой зако­дирована программа развития одного или нескольких признаков организма. В 50-х гг. на микроорганизмах (американский генетик С. Бензер) было показано , что каждый ген со­стоит из ряда различных участков, которые могут мутировать и между кото



2019-12-29 342 Обсуждений (0)
Наследственность и среда. 0.00 из 5.00 0 оценок









Обсуждение в статье: Наследственность и среда.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (342)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.02 сек.)