Мегаобучалка Главная | О нас | Обратная связь


Дискретизация речи с последующим шифрованием



2019-12-29 243 Обсуждений (0)
Дискретизация речи с последующим шифрованием 0.00 из 5.00 0 оценок




 (цифровое скремблирование)

 

Альтернативным аналоговому скремблированию методом передачи речи в закрытом виде является шифрование речевых сигналов, преобразованных в цифровую форму, перед их передачей ( см. рис. 1-С и 1-D). Этот метод обеспечивает более высокий уровень закрытия по сравнению с описанными выше аналоговыми методами. В основе устройств работающих по такому принципу, лежит представление речевого сигнала в виде цифровой последовательности, закрываемой по одному из криптографических алгоритмов. Передача данных, представляющих дискретизированные отсчеты речевого сигнала или его параметры, по телефонным сетям, как и в случае устройств шифрования алфавитно-цифровой и графической информации, осуществляется через устройства, называемые модемами.

Основной целью при разработке устройств цифрового закрытия речи является сохранение тех ее характеристик, которые наиболее важны для восприятия слушателем. Одним из путей является сохранение формы речевого сигнала. Это направление применяется в широкополосных цифровых системах закрытия речи. Однако использование свойств избыточности информации, содержащейся в человеческой речи, более эффективно. Это направление разрабатывается в узкополосных цифровых системах закрытия речи.

Ширину спектра речевого сигнала можно считать приблизительно равной 3,3 кГц, а для достижения хорошего качества восприятия необходимое соотношение сигнал/шум должно составлять 30 дБ. Тогда, согласно теории Шеннона, требуемая скорость передачи дискретизированной речи будет соответствовать величине 33 кбит/с.

С другой стороны, структура речевого сигнала представляет собой последователь­ность звуков (фонем), передающих информацию. Поскольку в английском языке около 40 фонем, а в немецком - 70, то для представления фонетического алфавита потребуется 6-7 бит. Максимальная скорость произношения не превышает 10 фонем в секунду. Сле­довательно, минимальная скорость передачи основной технической информации речи не ниже 60-70 бит/с.

Сохранение формы сигнала требует высокой скорости передачи и, соответственно, использования широкополосных каналов связи. Например, при импульсно-кодовой мо­дуляции (ИКМ), используемой в большинстве телефонных сетей, необходима скорость передачи, равная 64 кбит/с. В случае применения адаптивной дифференциальной ИКМ она понижается до 32 кбит/с и ниже. Для узкополосных каналов, не обеспечивающих такие скорости передачи, требуются устройства, исключающие избыточность речи до ее передачи. Снижение информационной избыточности речи достигается параметризацией речевого сигнала, при которой характеристики речи, существенные для восприятия, сохраняются.

Таким образом, правильное применение методов цифровой передачи речи с высокой информационной эффективностью является крайне важным направлением разработок устройств цифрового закрытия речевых сигналов. В таких системах устройство кодиро­вания речи (вокодер), анализируя форму речевого сигнала, производит оценку пара­метров переменных компонент модели генерации речи и передает эти параметры в циф­ровой форме по каналу связи на синтезатор, где согласно этой модели по принятым параметрам синтезируется речевое сообщение. В таких моделях речевой сигнал пред­ставляется в виде нестационарного процесса с ограниченной скоростью изменения пара­метров из-за механической инерции голосовых органов человека. На малых интервалах времени (до 30 мс) параметры сигнала могут рассматриваться как постоянные. Чем ко­роче интервал анализа, тем более точно может быть представлена динамика речи, но при этом требуется более высокая скорость передачи данных. В большинстве практи­ческих случаев используются 20-миллисекундные интервалы и достигается скорость передачи данных 2400 бит/с.

Наиболее распространенными типами вокодеров являются полосные и с линейным предсказанием. Целью любого вокодера является передача параметров, характеризую­щих речь и имеющих низкую информационную скорость. Полосный вокодер достигает этого путем передачи амплитуды нескольких частотных полос речевого спектра. Каж­дый полосовой фильтр такого вокодера возбуждается при попадании энергии речевого сигнала в его полосу пропускания. Так как спектр речевого сигнала изменяется относи­тельно медленно, набор амплитуд выходных сигналов фильтров образует пригодную для вокодера основу. В синтезаторе параметры амплитуды каждого канала управляют коэфициентами усиления фильтра, характеристики которого подобны характеристикам фильтра анализатора. Таким образом, структура полосного вокодера базируется на двух блоках фильтров - для анализа и синтеза. Увеличение числа каналов улучшает разбор­чивость, но при этом требуется большая скорость передачи. Компромиссным решением обычно становится выбор 16-20 каналов при скорости передачи около 2400 бит/с.

Полосовые фильтры в цифровом исполнении строятся на базе аналоговых фильтров Баттерворта, Чебышева, эллиптических и других. Каждый 20-миллисекундный от­резок времени кодируется 48 битами, из них 6 бит отводится на информацию об основ­ном тоне, один бит на информацию "тон-шум", характеризующую наличие или отсут­ствие вокализованного участка речевого сигнала, остальные 41 бит описывают значения амплитуд сигналов на выходе полосовых фильтров.

Существуют различные модификации полосного вокодера, приспособленные для каналов с ограниченной полосой пропускания. При отсутствии жестких требований на качество синтезированной речи удается снизить количество бит передаваемой информа­ции с 48 до 36 на каждые 20 миллисекунд, что обеспечивает снижение скорости до 1800 бит/с. Уменьшение скорости передачи до 1200 бит/с возможно в случае передачи каж­дого второго кадра речевого сигнала и в нем дополнительной информации о синтезе пропущенного кадра. Потери в качестве синтезированной речи от таких процедур не слишком велики, достоинством же является снижение скорости передачи сигнала.

Наибольшее распространение среди систем цифрового кодированияречи с последу­ющим шифрованием получили системы, основным узлом которых являются вокодеры с линейным предсказанием речи (ЛПР).

Математическое представление модели цифрового фильтра, используемого в воко­дере с линейным предсказанием, имеет вид кусочно-линейной аппроксимации процесса формирования речи с некоторыми упрощениями, а именно: каждый текущий отсчет ре­чевого сигнала является линейной функцией Р предыдущих отсчетов. Несмотря на не­совершенство такой модели, ее параметры обеспечивают приемлемое представление ре­чевого сигнала. В вокодере с линейным предсказанием анализатор осуществляет мини­мизацию ошибки предсказания, представляющей собой разность текущего отсчета рече­вого сигнала и средневзвешенной суммы Р предыдущих отсчетов, где Р - порядок пред­сказания, а весовые коэффициенты являются коэффициентами линейного предсказания. Оценка качества проводится по минимуму среднеквадратической величины ошибки пред­сказания. Существует несколько методов минимизации ошибки. Общим для всех являет­ся то, что при оптимальной величине коэффициентов предсказания спектр сигнала ошибки приближается к белому шуму и соседние значения ошибки имеют минимальную корре­ляцию. Известные методы делятся на две категории: последовательные и боковые, ко­торые получили наибольшее распространение.

В вокодере с линейным предсказанием речевая информация передается тремя пара­метрами: амплитудой, решением "тон/шум" и периодом основного тона для вокализо­ванных звуков. Так, согласно федеральному стандарту США, период анализируемого отрезка речевого сигнала составляет 22,5 мс, что соответствует 180 отсчетам при частоте дискретизации 8 кГц. Кодирование в этом случае осуществляется 54 битами, что соответствует скорости передачи 2400 бит/с. При этом 41 бит отводится на кодирова­ние десяти коэффициентов предсказания, 5 - на кодирование величины амплитуды, 7 - на передачу периода основного тона, и 1 бит определяет решение "тон/шум". При осу­ществлении подобного кодирования предполагается, что все параметры независимы, однако в естественной речи параметры коррелированы и возможно значительное сниже­ние скорости передачи данных без потери качества, если правило кодирования оптими­зировано с учетом зависимости всех параметров. Такой подход известен под названием векторного кодирования. Его применение к вокодеру с линейным предсказанием позво­лит снизить скорость передачи данных до 800 бит/с и менее с очень малой потерей ка­чества.

Основной особенностью использования систем цифрового закрытия речевых сигналов является необходимость использования модемов. В принципе возможны следующие подходы при проектировании систем цифрового закрытия речевых сигналов:

1) цифровая последовательность параметров речи с выхода вокодерного устройства подается на вход шифратора, где подвергается преобразованию по одному из криптог­рафических алгоритмов, затем поступает через модем в канал связи, на приемной сто­роне которого осуществляются обратные операции по восстановлению речевого сигна­ла, в которых задействованы модем и дешифратор (см. рис.1.D). Шифрующие/дешифрующие функции обеспечивают­ся либо в отдельных устройствах, либо в программно-аппаратной реализации самого вокодера;

2) шифрующие/дешифрующие функции обеспечиваются самим модемом (так называемый засекречивающий модем) обычно по известным криптографическим алгорит­мам типа DES и другим. Цифровой поток, несущий информацию о параметрах речи, с выхода вокодера непосредственно поступает на такой модем. Организация связи по ка­налу аналогична вышеприведенной.

 

 




2019-12-29 243 Обсуждений (0)
Дискретизация речи с последующим шифрованием 0.00 из 5.00 0 оценок









Обсуждение в статье: Дискретизация речи с последующим шифрованием

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (243)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)