Мегаобучалка Главная | О нас | Обратная связь


Линейный уравнение хорда гаусс ньютон



2019-12-29 171 Обсуждений (0)
Линейный уравнение хорда гаусс ньютон 0.00 из 5.00 0 оценок




, , если

, , если


Погрешность вычислений:

 

, ,

 

В отличие от метода дихотомии, обращающего внимание лишь на знаки значений функции, но не на сами значения, метод хорд использует пропорциональное деление интервала (рисунок 1).

 

Рис. 1. Метод хорд Рис.2. Метод касательных

 

Здесь вычисляются значения функции на концах отрезка и строится “хорда”, соединяющая точки (a, f(a)) и (b, f(b)). Точка пересечения ее с осью абсцисс

 

 

принимается за очередное приближение к корню. Анализируя знак f(z) в сопоставлении со знаком f(x) на концах отрезка, сужаем интервал до [a,z] или [z,b] и продолжаем процесс построения хорд до тех пор, пока разница между очередными приближениями не окажется достаточно малой (в пределах допустимой погрешности) |Zn-Zn-1|< .

Можно доказать, что истинная погрешность найденного приближения:

 

,

где X* - корень уравнения, Zn и Zn+1 - очередные приближения, m и M – наименьшее.

 

Метод Ньютона

 

Пусть корень уравнения отделен на отрезке [a, b], причем и непрерывны и сохраняют определенные знаки при . Если на некотором произвольном шаге n найдено приближенное значение корня , то можно уточнить это значение по методу Ньютона. Положим

(1)

где считаем малой величиной. Применяя формулу Тейлора, получим:

Следовательно,

Внеся эту поправку в формулу (1), найдем следующее (по порядку) приближение корня

 

  (2)

Геометрически метод Ньютона эквивалентен замене дуги кривой касательной, проведенной в некоторой точке кривой. В самом деле, положим для определенности, что при и (см. рис.).

Выберем, например, , для которого . Проведем касательную к кривой в точке B0 с координатами .

 

 

В качестве первого приближения корня возьмем абсциссу точки пересечения касательной с осью Ox. Через точку снова проведем касательную, абсцисса точки пересечения которой даст второе приближение корня и т.д.

Формулу для уточнения корня можно получить из прямоугольного треугольника , образованного касательной, проведенной в точке , осью абсцисс и перпендикуляром, восстановленным из точки .

Имеем

Так как угол образован касательной и осью абсцисс, его тангенс численно равен величине производной, вычисленной в точке, соответствующей абсциссе точки касания, т.е.

 

Тогда

 

или для любого шага n

.

 

В качестве начальной точки можно принять либо один из концов отрезка [a, b], либо точку внутри этого интервала. В первом случае рекомендуется выбирать ту границу, где выполняется условие

 

 

т.е. функция и ее вторая производная в точке должны быть одного знака.

В качестве простейших условий окончания процедуры уточнения корня рекомендуется выполнение условия

 

 

Как следует из последнего неравенства, требуется при расчете запоминать три значения аргумента . В практических инженерных расчетах часто применяют сравнение аргументов на текущей и предыдущей итерациях:

 

 

При составлении программы решения уравнения методом Ньютона следует организовать многократный расчет приближений для корня. Если удается получить аналитическое выражение для производной, то ее вычисление, а также вычисление можно оформить в виде функций.




2019-12-29 171 Обсуждений (0)
Линейный уравнение хорда гаусс ньютон 0.00 из 5.00 0 оценок









Обсуждение в статье: Линейный уравнение хорда гаусс ньютон

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (171)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)