Мегаобучалка Главная | О нас | Обратная связь


Метаболическая селекция гибридов



2019-12-29 377 Обсуждений (0)
Метаболическая селекция гибридов 0.00 из 5.00 0 оценок




Лекция 12, 13. Тема: Общая схема получения гибридом на основе миеломных клеток и иммунных лимфоцитов.(4 часа)

План лекции

1. Принципиальная схема получения моноклональных антител

2. Общая схема получения гибридом на основе миеломных клеток и иммунных лимфоцитов

Метаболическая селекция гибридов

Метаболическая селекция гибридов основана на том, что нормальные соматические клетки (В-лимфоциты) могут использовать два метаболических пути синтеза нуклеотидов (пуринов и пиримидинов): основной путь и резервный путь.

В случае основного пути синтеза de novo нуклеотидов они образуются из аминокислот и углеводных предшественников.

При резервном пути синтез нуклеотидов осуществляется из гипоксантина (пурины) или из дезокситимидина (пиримидины).

Задача селекции сводится к отделению гибридом от миеломных неслившихся клеток. Для решения этой задачи используют селективную среду ГАТ (культуральная среда, содержащая гипоксантин - аминоптерин - тимидин). В такой среде, содержащей аминоптерин, блокируется основной путь синтеза нуклеотидов, а наличие гипоксантина и тимидина обеспечивает синтез нуклеотидов по запасному пути. В таких условиях миеломные клетки погибают и остаются функционально активными только гибридомы.

В-лимфоциты не адаптированы к росту in vitro, они достаточно быстро разрушаются, что облегчает процесс селекции.

Основные этапы получения гибридомы представлены на рисунке

1. Мыши вводят специфический антиген, который вызывает продукцию антител против этого антигена.

2. Селезенка мышей удаляется и гомогенизируется для получения суспензии клеток. Эта суспензия содержит B клетки, которые продуцируют антитела против введенного антигена.

3. Клетки селезенки затем смешивают с клетками миеломы, которые способны непрерывно расти в культуре, а так же отсутствует резервный путь синтеза нуклеотидов.

4. Некоторые из антитело-продуцирующих клеток селезенки и клетки миеломы сливаются, образуя гибридные клетки. Эти гибридные клетки теперь способны непрерывно расти в культуре, а так же продуцировать антитела.

клеток миеломы способность к неограниченному росту in vitro.

выжившие гибридомы, сохраняли способность синтезировать и секретировать антитела, а так же пролиферировать.

 

Рисунок. Схема получения антиидиотипических антител

Следующий этап после получения гибридом - клонирование и отбор нужных клонов. Выжившие в ГАТ клетки рассевали в пластиковые планшеты. В каждую лунку помещали в среднем по 10 гибридомных клеток. После нескольких дней культивирования содержимое каждой лунки проверяли на присутствие антител нужной специфичности. Клетки из лунок, содержащих нужные антитела, клонировали, то есть повторно рассевали по лункам, но из расчета 1 клетка на лунку, вновь культивировали и проверяли на присутствие нужных антител. Процедуру повторяли 1-2 раза.

Клонированные гибридомы проверяют на способность синтезировать антитела и на продуктивность. Отобранные гибридомы хранят при минус 70 ºС.

Для получения моноклональных антител гибридные клетки размножают путем выращивания на питательных средах или вводя в брюшную полость гистосовместимых мышей, предварительно стимулированных на активизацию роста гибридомных клеток.

Достоинства данного метода:

1. Возможность получения индивидуальных и двойных гибридом. Последние представляют большую ценность для иммунохимических и диагностических исследований.

2. Выраженная масштабность получения. Моноклональные антитела могут быть синтезированы в неограниченном количест­ве против любых антигенных субстанций в титрах 1:108 (10 мг антител/мл).

3. Гибридизация позволяет получать Моноклональные анти­тела при иммунизации неочищенным антигеном.

4. Возможность получения моноклональных антител к опухо­левым антигенам с реальной перспективой их использования для лечения злокачественных новообразований.

5. Применение в клинике моноклональных антител для ингибиции субпопуляции Т-лимфоцитов, отторгающих трансплантат.

6. Созданы гибриды миелом мышей и лимфоцитов человека, имеются сообщения о получении человеческих гибридом, в час­тности, к интерлейкину, что позволяет выделять его в очищенном виде.

7. Применение для таксономических целей, изучения бакте­риофагов и борьбы с бактериофагией в условиях микробиологичес­кой промышленности.

8. Возможность получения большого количества функциональ­но иммунокомпетентных клеток и их продуктов.

9. Использование антиидиотипических моноклональных ан­тител в качестве вакцинных препаратов.

 

Гибридомы революционизировали иммунологию и создали в ней совершенно новые области. Благодаря гибридомам возникли новые методы диагностики многих заболеваний и открылись новые пути для изучения злокачественных опухолей и многих заболеваний.

Моноклональные антитела оказались исключительно удобным и широко применяемым в настоящее время диагностическим средством. С их помощью определяют маркеры клеточных популяций (фенотипирование клеток крови и в частности лимфоцитов), гормоны, медиаторы, опухолевые маркеры и т.д.

С помощью гибридом можно обнаружить антигены, характерные для опухолей определенных тканей, получить к ним антитела и использовать их для диагностики и типирования опухолей.

Для клеток в определенной стадии развития или функционирования характерно наличие на поверхности определенных молекулы. На определении этих CD антигенов основана идентификация субпопуляций лимфоцитов человека.

С помощью моноклональных антител в опухоль и ее метастазы можно доставить радиоактивные вещества, позволяющие обнаружить небольшие узелки опухоли по локализации в них радиоактивности если их связать с изотопом.

Именно применение моноклональных антител в диагностике позволило значительно увеличить специфичность и чувствительность тест-систем основанных на реакции антиген-антитело.

С развитием гибридомной технологии методика претерпела существенных изменений. В качестве индуктора слияния клеток в современных работах используется полиэтиленгликоль. На смену полужидкому агару пришла техника лимитирующих разведений. Еще одним направлением развития данной технологии стало создание и оптимизация клеточных линий плазмацитом. Большинство культивируемых клеточных линий плазмацитом были созданы в рамках исследований Национального института здоровья в США, посвященных изучению структур и функций иммуноглобулинов. Интересно, что практически все используемые для создания гибридом, продуцирующих моноклональные антитела, клеточные линии, были получены из штамма плазмацитомы MOPC21, индуцированных у мышей линии Balb/C. Однако, для использования этих клеточных линий необходимо было преодолеть ряд препятствий. Так, плазмацитомы, будучи клетками с высоким уровнем дифференцировки, обладают слабой способностью к росту вне организма. Поддержания культуры клеток стало возможным при использовании различных ростовых факторов, источником которых могут быть перитонеальные макрофаги, спленоциты или сыворотка крови мышей, иммунизированных полным адъювантом Фрейнда. Культивируемую линию выводили чередованием культивирования in vitro и пассированием в сингенных мышах. В результате многочисленных попыток была получена клеточная линия P3K. Дальнейшая работа по выведению гибридомных клеточных линий была связана с разработкой оптимальной методики метаболической селекции. В основе метода лежит возможность использования нормальными соматическими клетками двух путей синтеза нуклеотидов. Для селективного отбора сначала блокируют с помощью метаболических ядов основный тип синтеза, где предшественниками нуклеотидов являются аминокислоты и углеводы. Если же клетки дефицитны по ферментам второго (запасного) пути синтеза нуклеотидов, то она гибнет. От гибели клетку может спасти гибридизация с клеткой, содержащей дефицитный ген. Этот принцип лег в основу метода получения гибридомных клеточных линий.

Существенным этапом в становлении гибридомной технологии стало создание штаммов плазмацитом, лишенных способности продуцировать иммуноглобулины и их фрагменты.


 

Для этого плазмацитомы обрабатывали сыворотками к мышиным иммуноглобулинам, отбирали и клонировали клетки, не продуцирующие Ig.

На данный момент выведено множество линий клеток плазмацитом: X63Ag8.653, NSO, SP-2/O-Ag14. Все они различаются по способности производить после слияния стабильные клоны, продуцирующие значительные количества моноклональных антител. Гибридомы X63, NSO, получаемые из исходных миеломных клеток - стабильнее чем те, что являются гибридными производными. Однако, все эти линии имеют существенный общий недостаток - острая необходимость в присутствии экзогенных ростовых факторов. Чаще всего применяют коровьи эмбриональные сыворотки. Реже используют сыворотки других животных, в частности сыворотку пуповинной крови человека. Работа с сыворотками вносит и негативный вклад в методику, так как создаёт необходимость тщательного контроля контаминации микоплазмами, которые конкурируют с клетками за предшественников нуклеотидных оснований.

Важным этапом создания гибридом является эффективная иммунизация животных. На титр антител может влиять как природа антигена, так и генотип животного. Успех иммунизации определяется рядом факторов: свойствами иммуногена, сочетанием с адъювантами или носителями. Так, полный адъювант Фрейнда применяют для получения иммунного ответа на целый спектр антигенов и коиньецируемых примесей. Однако, его применение имеет ряд побочных эффектов, в частности - болезненные очаги воспаления, чего не наблюдается при иммунизации с неполным адъювантом Фрейнда. Если же целью является получение иммуноглобулинов класса E, то в качестве адъювантов используют алюмокалиевые квасцы. Для получения высокого титра антител необходимо оптимизировать также схему иммунизации. Известными фактом является то, что с увеличением длительности стимуляции антигеном увеличивается аффинность, получаемых моноклональных антител, но снижается олигоклональность иммунного ответа. Следует помнить, что частые повторные введения антигена ведут к снижению ответа до фонового уровня. Однако, имеет смысл увеличить концентрацию антигена у животных непосредственно перед взятием у них лимфоидных клеток. Еще одним способом увеличить выход моноклональных антител является использование механизма адаптивного переноса спленоцитов от иммунизированных мышей облученным реципиентам. Таким же образом пытались изменить спектр специфичности антител.

Эффективная иммунизация помимо всего вышеперечисленного опосредована генотипом иммунизируемых животных. Общепринятым ныне является подход с использованием генетически инбредных линий мышей Balb/C, как для иммунизации, так и для получения культивируемых линий плазмацитом. Очевидным плюсом его является разрешение проблемы гистосовместимости, минусом - сужение спектров эпитопов, распознаваемых получаемыми моноклональными антителами.

Приняв во внимание все ключевые моменты эффективной иммунизации и получив необходимый титр антител, переходят к этапу получения спленоцитов и их слиянию. В качестве источника лимфоцитов обычно используют селезенку, реже лимфоузлы или костный мозг.

Перед слиянием клеток их обогащают плазмобластами. Для этого существует несколько различных подходов. Наиболее простой заключается в повторном введении антигена в течение нескольких дней предшествующих получению клеток. Другой подход состоит в использовании различных манипуляций с лимфоидными клетками in-vitro с целью обогащения суспензии плазмобластами. К примеру, предварительное выделение клеток с плавучестью 1,06-1,07 на градиенте Percoll существенно увеличивало выход гибридом, продуцирующих моноклональные антитела. Сегодня для выделения специфических лимфобластов используют клеточный сортер. Для повышения выхода гибридом используют миеломные клетки, нагруженные специфическим антигеном, что приводит к образованию контактов между опухолевыми клетками и антиген-специфичными плазмобластами.

Подготовка плазмацитомы к слиянию заключается в выбраковке ревертантов из гомогенной синхронизированной культуры в логарифмической фазе роста; проверка её соответствия основным параметрам; рассеивание её с максимальной частой и поддержание её постоянной пролиферации.

Гибридизацию лимфобластов и плазмацитомы проводят путем клеточного слияния, опосредованного различными агентами, приводящими к изменению мембран, формированию цитоплазматических контактов и формированию дикарионов. Для индукции гибридизации используют несколько различных подходов. Первым изученным и вошедшим в практику было использование вируса Sendai, посредством вовлечения клеточных рецепторов, липидных компонентов мембран, гликопротеидов вируса. Этот подход имел ряд недостатков, связанных с воспроизводимостью результатов и жизнеспособностью гибридов. Альтернативным агентом является ПЭГ. Механизм слияния, индуцированного ПЭГ до конца не раскрыт. Для слияния используют ПЭГ с ММ 1000-4000 и концентрацией 30-55%. Сегодня появился более современный способ индуцировать слияние клеток - подвергнуть их воздействию электрических импульсов. В результате слияния получают несколько типов дикарионов. Для отбора интересующего дикариона (лимфобласт-миелома) используют ростовые среды, содержащие, помимо аминоптерина, гипокстантин и тимидин, которые опосредуют альтернативный путь синтеза ДНК. Таким образом, в ходе селекции выживают дикарионы, возникшие в результате слияния а) двух лимфобластов и б) лимфобласта и плазмацитомы. Первые быстро погибают ввиду ограниченности пролиферативного потенциала. Остаются целевые гибридные клетки. Данная схема имеет множество модификаций в отношении культивирования. Для культивирования можно использовать мягкий агар с уже включенными селектирующими агентами, либо жидкую селективную среду в 96 луночном планшете, либо же культивирование клеток проводят в условиях массовой среды, с их последующим переносом в селективную среду в 96-луночном планшете.

Помимо селективных агентов в питательные среды добавляют ростовые факторы, так как клетки мышиных плазмацитом и полученные из них гибриды нуждаются в присутствии ростовых факторов, в частности IL6. Для этого в среду помимо сыворотки добавляют кондиционированные среды - надосадочные жидкости, полученные при культивировании первичных клеточных культур, чаще перитонеальных макрофагов.

Еще одна стратегия по увеличению выхода гибридом, заключается в совместном рассевании гибридных клеток с другими клетками, к примеру, тимоцитами мышей, облученными ксеногенными или аллогенными фибробластами. Предполагается, что помимо создаваемого эффекта клеточной массы благоприятное влияние могут оказывать продуцируемые такими клетками различные цитокины. Если же в качестве таких клеток использовать перитонеальные макрофаги, то они будут выполнять крайне важную функцию расчистки культур от погибающих клеток.

Итак, дальнейшим этапом является скрининг гибридов-продуцентов моноклональных антител. Наиболее распространенными методами тестирования продуктов секреции гибридомных клеток являются методы иммуноанализа на основе ферментных и флуоресцентный меток. Тестирование моноклональных антител против клеточно-ассоциированных антигенов проводят непрямой иммунофлуоресценцией на живых или фиксированных клетках. Поиск моноклональных антител, направленных против антигенов клеточной поверхности, проводят микроцитотоксическим тестом. Выявление культур, синтезирующих специфические иммуноглобулины, является лишь первым этапом отбора растущих гибридов. Расширенный скрининг заключается в проведении как позитивного, так и негативного отбора, с целью выявить наличие специфических взаимодействий моноклональных антител с другими антигенами.

Так как все гибридомные клетки анеуплоидны, им присуща генетическая нестабильность и тенденция к выщеплению вариантов, утративших способность синтезировать иммуноглобулины. Основная потеря хромосом гибридомами происходит в течение первого месяца после слияния, затем в процессе длительного культивирования отмечается постепенная сегрегация хромосом. Клонирование является основным методом получения стабильных гибридомных штаммов. Этот процесс облегчает использование клеточного сортера. Однако, в практике довольно широко применяется более дешевые методы, такие как - клонирование в жидкой среде методом лимитирующих разведений. Процедура состоит в рассеве клеток с убывающей концентрацией.

Полученные генетически стабильные штаммы гибридом используют для выделения целевого продукта в необходимых количествах. Существуют два пути наработки моноклональных антител в больших количествах. Первый заключается в массовом культивировании in vitro. Метод имеет ряд недостатков, связанных с необходимостью выщепления сыворотки из компонентов среды. Решением этой проблемы стало внедрение бессывороточных сред, содержащих различные компенсирующие компоненты (инсулин, трансферрин). Для массового культивирования гибридом в ферментерах необходима длительная адаптация гибридомных штаммов, некоторые штаммы не удается адаптировать и их продолжают выращивать методом пассирования на животных.

Альтернативный путь наработки моноклональных антител применяется только в странах, в которых не приняты правила гуманного обращения с животными, в частности в России. Метод основывается на опухолевой природе гибридом и их способности расти в сингенных животных. Для получения больших объемов жидкости, содержащей моноклональные антитела, гибридомы вводят внутрибрюшинно мышам реципиентам. В результате в брюшной полости вырастает солидная опухоль и возможно накопление асцитической жидкости, являющейся источником моноклональных антител. Увеличить количество асцита, содержащего моноклональные антитела, можно путем внутрибрюшинного введения нетоксического масла за несколько дней до инокуляции гибридом. Однако, в организме мыши-реципиента развитию гибридомной опухоли противодействует ряд факторов. Во-первых, естественная резистентность организма, опосредованная NK клетками, активирующимися в ответ на различия в экспрессии молекул гистосовместимости. Во-вторых, активация Т лимфоцитов в ответ на опухолевые антигены. В-третьих, синтез антиидиотипических антител. Возможна еще активация антивирусного иммунного ответа, при наличии вируса в гибридомных клетках. Первостепенной задачей исследователей было разрешение проблемы сингенности клеток опухоли и организма реципиента. Одним из таких решений было использование бестимусных мышей.

Из двух перечисленных методов наработки моноклональных антител второй является наиболее продуктивным: выход моноклональных антител 1-25 мг/мл при культивировании in vitro и 20-100 мкг/мл при массировании гибридом на животных.

Таким образом, мы видим, что процесс создания моноклональных антител является трудоемким процессом. Однако, преимущества их использования во много раз окупают затраты. Моноклональные антитела стандартны в своих свойствах и могут быть получены в неограниченных количествах; обладают абсолютной специфичностью к одному эпитопу целевого антигена; изменение конфигурации эпитопа коррелирует со снижением сродства моноклональных антител к эпитопу; возможно создание моноклональных антител против ранее неизвестных



2019-12-29 377 Обсуждений (0)
Метаболическая селекция гибридов 0.00 из 5.00 0 оценок









Обсуждение в статье: Метаболическая селекция гибридов

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (377)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)