Мегаобучалка Главная | О нас | Обратная связь


На выкатной тележке монтируются также трансформаторы напряжения ЗНОЛ–06–10У3 и разрядники, силовые предохранители, разъединители.



2019-12-29 184 Обсуждений (0)
На выкатной тележке монтируются также трансформаторы напряжения ЗНОЛ–06–10У3 и разрядники, силовые предохранители, разъединители. 0.00 из 5.00 0 оценок




Введение

 

Электрической сетью называется устройство, соединяющее источники питания с потребителями электроэнергии. От свойств и работы электрической сети зависит качество электроснабжения потребителей. К электрическим сетям предъявляются определённые технико-экономические требования. Поэтому электрические сети должны тщательно рассчитываться, специально проектироваться и квалифицированно эксплуатироваться.

Основным назначением электрических сетей является электроснабжение потребителей. Под этим обычно понимают передачу электроэнергии от источников питания и распределение её между потребителями.

Электроэнергетика, определяющая электровооруженность труда, принадлежит к ведущим отраслям индустрии и имеет опережающее развитие, что является основой технического прогресса промышленности и повышения уровня всего общественного производства. Электроэнергия является наиболее универсальным видом энергии. Широкое применение электроэнергии во всех отраслях промышленности объясняется относительной простотой ее производства, передачи, распределения между потребителями и легкостью превращения в другие виды энергии. Развитие электроэнергетики в нашей стране идет по пути создания больших энергосистем и централизованной выработки электроэнергии на базе крупных тепловых (в том числе атомных) и гидравлических станций, что наиболее эффективно в технико-экономическом отношении. Мощность энергосистем непрерывно растет, и эта тенденция развития энергетики будет сохраняться и в будущем.

Развитие энергетики России, усиление связей между энергосистемами требует расширения строительства электроэнергетических объектов, в том числе электрических сетей напряжением 110 кВ переменного тока.

Из основного назначения электрической сети следует, что она должна обеспечивать достаточную надёжность электроснабжения. Опыт показывает, что практически все элементы электрической сети иногда могут повреждаться. При надлежащем качестве эксплуатации сети повреждения возникают из-за климатических условий.

Электрическая сеть является существенным звеном в цепи электроснабжения потребителей и поэтому влияет на изменение показателей качества электроэнергии. Практически важно, чтобы электроэнергия доставлялась потребителям с допустимыми показателями ее качества, например, при соответствующих величинах напряжений. При этом также не следует предъявлять чрезмерные требования. Снижение влияния сети или мероприятия по улучшению показателей качестве электроэнергии могут обходиться достаточно дорого. Поэтому экономически более обоснованным обычно является изготовление электроприемников, допускающих некоторые отклонения показателей качества энергии от номинальных значений. Эти приемлемые отклонения должны обеспечиваться экономически обоснованными путями. В частности, это относится к выбору параметров элементов сети и применению дополнительных устройств, позволяющих улучшать указанные показатели до приемлемых значений. Наконец, электрическая сеть как любое инженерное сооружение должна быть экономичной. При этом требование экономичности должно обеспечиваться при условии выполнения указанных выше технических требований. Это значит, что должны приниматься наиболее совершенные технические решения, должно обеспечиваться более полное и рациональное использование применяемого оборудования, за работой электрической сети должен осуществляться систематический контроль. Для получения более рациональных решений и для обеспечения наиболее экономичной работы сети требуется проведение соответствующих расчетов. Текущий контроль за работой сети позволяет своевременно воздействовать на условия работы сети в целях повышения соответствующих технико-экономических показателей.

Требование экономичности является наиболее общим. В конечном счете требования обоснованной надежности электроснабжения и обеспечения наивыгоднейших показателей качества электроэнергии также сводятся к условиям обеспечения большей экономичности. Однако они имеют и самостоятельное значение, так как основаны на типовых решениях и являются важными показателями для всей системы электроснабжения.

Производство электроэнергии растет во всем мире, что сопровождается ростом числа электроэнергетических систем, которое идет по пути централизации выработки электроэнергии на крупных электростанциях и интенсивного строительства линий электропередач и подстанций.

Проектирование электрической сети, включая разработку конфигурации сети и схемы подстанции, является одной из основных задач развития энергетических систем, обеспечивающих надёжное и качественное электроснабжение потребителей. Качественное проектирование является основой надёжного и экономичного функционирования электроэнергетической системы.

Задача проектирования электрической сети относится к классу оптимизационных задач, однако не может быть строго решена оптимизационными методами в связи с большой сложностью задачи, обусловленной многокритериальностью, многопараметричностью и динамическим характером задачи, дискретностью и частичной неопределенностью исходных параметров.

В этих условиях проектирование электрической сети сводится к разработке конечного числа рациональных вариантов развития электрической сети, обеспечивающих надёжное и качественное электроснабжение потребителей электроэнергией в нормальных и послеаварийных режимах. Выбор наиболее рационального варианта производится по экономическому критерию. При этом все варианты предварительно доводятся до одного уровня качества и надёжности электроснабжения. Экологический, социальный и другие критерии при проектировании сети учитываются в виде ограничений.

 


1. Исходные данные для проектирования

 

В данном дипломном проекте требуется спроектировать электрическую сеть для электроснабжения потребителей подстанций. Основные исходные данные приведены в таблице 1.1.

Питание электрической сети осуществляется от одного источника неограниченной мощности А. Коэффициент мощности потребителей всех подстанций принимался равным 0,9.

В режиме минимальных нагрузок величина нагрузки составляет 30% от максимальной.

Вторичное напряжение подстанций потребителей равно 10 кВ.

Потребители электроэнергии всех подстанций имеют 67% нагрузки 1-й и 2-й категории и 33% – 3-й категории.

Электрическая сеть проектируется для II района по гололеду и III района – по ветру.

 

Таблица 1.1- Основные исходные данные для курсового проектирования

Расчетная активная нагрузка подстанций на шинах вторичного напряжения, МВт

Число часов использования максимума нагрузок
Р1 Р2 Р3 Р4 Р5 Р6 Тм
40 25 35 25 15 20 4500

 

Рисунок 1.1 – План проектируемого района


Таблица 1.2- Расстояния между узлами

Ветвь Длина, км
А – 1 24
А – 2 20
А – 3 20
1 – 2 20
2 – 4 30
4 – 6 30
3 – 5 37
4 – 5 16
5 – 6 10

 


2. Разработка схем электрической сети района

 

Из конечного множества вариантов схем соединения источников питания с потребителями электрической энергии выбраны пять, характеризующиеся одинаковой надежностью, но различной протяженностью (рисунок 2.1). В соответствии с [16] потребители I категории должны обеспечиваться электроэнергией от двух независимых источников питания, и перерыв в их электроснабжении допускается лишь на период автоматического включения резервного питания. В большинстве случаев двухцепная линия не удовлетворяет требованиям надежности электроснабжения потребителей I категории, так как при повреждении опор при гололеде возможен полный перерыв питания. Для таких потребителей необходимо предусматривать не менее двух отдельных линий. Для потребителей II категории в большинстве случаев также предусматривают питание по двум отдельным линиям либо по двух цепной линии. Однако, учитывая непродолжительность времени аварийного ремонта воздушных линий, электроснабжение нагрузок II категории допускается производить по одной воздушной линии. Для потребителей III категории достаточно питания по одной линии.

 

Вариант1                                                      Вариант2

                 

 


Вариант3                                                      Вариант4  

                 

 

Вариант5

 

Рисунок 2.1 - Варианты схем проектируемого района

 


3. Предварительное распределение мощностей

 

3.1 Предварительное распределение мощностей для варианта 1

 

«Разрежем» схему первого варианта по источникам питания. Получим две независимых схемы (рисунок 3.1). Обе схемы представляет собой линии с двухсторонним питанием. Найдём потоки активной мощности в них:

 

Рисунок 3.1 – Распределение мощностей для варианта 1

 

 МВт;

 МВт;

 МВт;

 МВт;

 МВт.


3.2 Предварительное распределение мощностей для варианта 2

 

Рисунок 3.2 – Распределение мощностей для варианта 2

 

 МВт;

 МВт;

 МВт;

 МВт;

 МВт;

 МВт;

 МВт.

 


3.3 Предварительное распределение мощностей для варианта 3

 

Рисунок 3.3 – Распределение мощностей для варианта 3

 

 МВт;

 МВт;

 МВт;

 МВт;

 МВт;

 МВт.

 


3.4 Предварительное распределение мощностей для варианта 4

 

Рисунок 3.4 – Распределение мощностей для варианта 4

 

 МВт;

 МВт;

 МВт;

 МВт;

 МВт.

3.5 Предварительное распределение мощностей для варианта 5

 

Рисунок 3.5 – Распределение мощностей для варианта 5

 

 МВт;

 МВт;

 МВт;

 МВт;

 МВт.

 


4. Выбор номинальных напряжений

 

Номинальное напряжение определяют по формуле:

 

,                                         (4.1)

где l – длина линии;

Р – мощность, передаваемая по линии.

 

 

Для остальных линий расчет аналогичен. Поэтому полученные результаты сводим в таблицу.

 

Таблица 4.1 – Номинальные напряжения для варианта 1

Линия А-3 3-5 5-6 6-4 4-2 1-2 А-1
Напряжение, кВ 130,76 114,28 81,26 42,47 84,66 107,24 138,74

 

Принимаем номинальное напряжение линий  кВ.

 

Таблица 4.2 – Номинальные напряжения для варианта 2

Линия А-3 3-5 5-6 А-1 1-2 А-2 2-4
Напряжение, кВ 128,34 108,5 75,59 116,07 75,89 92,62 92,58

 

Принимаем номинальное напряжение линий  кВ.

 

Таблица 4.3 – Номинальные напряжения для варианта 3

Линия А-3 3-5 5-6 А-1 1-2 А-2 2-4
Напряжение, кВ 128,34 108,5 75,59 109,54 75,89 118,92 92,58

Принимаем номинальное напряжение линий  кВ.

 

Таблица 4.4 – Номинальные напряжения для варианта 4

Линия А-3 3-5 5-6 6-4 4-2 А-2 А-1
Напряжение, кВ 126,04 102,88 69,43 10,05 98,64 123,05 109,54

 

Принимаем номинальное напряжение линий  кВ.

 

Таблица 4.5 – Номинальные напряжения для варианта 5

Линия А-3 3-5 5-4 2-1 4-2 5-6 А-1
Напряжение, кВ 131,8 116,75 49,97 105,18 80,63 75,59 137,63

 

Принимаем номинальное напряжение линий  кВ.

 


5. Выбор сечения и марки проводов

 

5.1 Выбор сечений и марок проводов для варианта 1

 

Токи в линиях определяют по формуле:

 

,                                         (5.1)

 

где Uн – номинальное напряжение линии.

 

А;

А;

 

Для остальных линий расчет аналогичен. Поэтому полученные результаты целесообразно свести в таблицу.

 

Таблица 5.1 – Токи линий

Линия А-3 3-5 5-6 6-4 4-2 2-1 А-1
Ток, А 217,68 231,23 143,75 27,12 118,68 235,35 234,33

 

Выбираем сталеалюминевые провода, для которых экономическая плотность тока:

 

.

 

Расчетные сечения проводов определяют по формуле:


,                                                                      (5.2)

 

где – экономическая плотность тока.

 

мм2.

 

Таблица 5.2 – Расчетные сечения проводов

Линия А-3 3-5 5-6 6-4 4-2 2-1 А-1
Сечение, мм2 197,89 210,21 130,68 24,65 107,89 213,95 213

 

В соответствии с полученными расчетными сечениями проводов выбираем марку провода и длительно допустимые токи. Проверку производят при протекании максимального тока по линии по условию:

 

 Iав < Iдоп.                                                             (5.3)

 

Таблица 5.3 – Марка проводов и длительно допустимые токи

Линия Ток участка, А Сечение Число цепей Вид аварии Iав, А Iдоп, А
А-3 435,35 АС-240 2 Обрыв 1ц 435,35 605
3-5 231,23 АС-240 1 Обрыв 2-1 520,78 605
5-6 143,75 АС-240 1 Обрыв 2-1 289,55 475
6-4 27,12 АС-70 1 Обрыв 3-5 170,87 265
4-2 118,68 АС-120 1 Обрыв 3-5 289,55 390
2-1 235,35 АС-240 1 Обрыв 3-5 524,9 605
А-1 468,59 АС-240 2 Обрыв 1ц 468,59 605

 

Выбранные провода удовлетворяют заданному условию.

 


5.2 Выбор сечений и марок проводов для варианта 2

 

Таблица 5.4 – Токи в линиях

Линия А-3 3-5 5-6 6-4 4-2 2-1 А-2 А-1
Ток, А 2∙204,1 2∙102,1 2∙58,32 27,12 2∙72,9 98,09 222,66 273,05

 

Выбираем сталеалюминевые провода, для которых экономическая плотность тока:

 

.

 

Таблица 5.5 – Расчетные сечения проводов

Линия А-3 3-5 5-6 А-2 4-2 2-1 А-1
Сечение, мм2 185,56 92,78 53,02 202,42 66,27 89,17 248,2

 

В соответствии с полученными расчетными сечениями проводов выбираем марку провода и длительно допустимые токи.

 

Таблица 5.6 – Марка проводов и длительно допустимые токи

Линия Ток участка Сечение Число цепей Вид аварии Iав, А Iдоп, А
А-3 408,23 АС-240 2 Обрыв 1ц 408,23 610
3-5 204,12 АС-95 2 Обрыв 1ц 204,12 330
5-6 116,64 АС-70 2 Обрыв 1ц 116,64 265
А-2 222,66 АС-240 1 Обрыв А-1 466,55 610
А-1 273,05 АС-240 1 Обрыв А-2 516,94 610
1-2 98,09 АС-95 1 Обрыв А-2 243,89 330
2-4 145,8 АС-70 2 Обрыв 1ц 145,8 265

 

Выбранные провода удовлетворяют заданному условию

 


5.3 Выбор сечений и марок проводов для варианта 3

 

Таблица 5.7 – Токи в линиях

Линия А-3 3-5 5-6 4-2 А-2 А-1
Ток, А 2∙204,1 2∙102,1 2∙58,32 2∙72,9 2∙131,22 2∙116,64

 

Выбираем сталеалюминевые провода, для которых экономическая плотность тока:

.

 

Таблица 5.8 – Расчетные сечения проводов

Линия А-3 3-5 5-6 А-2 4-2 А-1
Сечение, мм2 185,56 92,78 53,02 119,29 66,27 106,04

 

В соответствии с полученными расчетными сечениями проводов выбираем марку провода и длительно допустимые токи.

 

Таблица 5.9 – Марка проводов и длительно допустимые токи

 Линия Ток участка Сечение Число цепей Вид аварии Iав, А Iдоп, А
А-3 408,23 АС-240 2 Обрыв 1ц 408,23 610
3-5 204,12 АС-95 2 Обрыв 1ц 204,12 330
5-6 116,64 АС-70 2 Обрыв 1ц 116,64 265
А-2 262,43 АС-240 2 Обрыв 1ц 262,43 605
2-4 145,8 АС-70 2 Обрыв 1ц 145,8 265
А-1 233,27 АС-240 2 Обрыв 1ц 233,27 605

 

Выбранные провода удовлетворяют заданному условию.

 


5.4 Выбор сечений и марок проводов для варианта 4

 

Таблица 5.10 – Токи в линиях

Линия А-3 3-5 5-6 6-4 4-2 А-2 А-1
Ток, А 2∙192,1 180,09 92,61 24,03 169,82 286,46 2∙116,64

 

Выбираем сталеалюминевые провода, для которых экономическая плотность тока:

 

.

 

Таблица 5.11 – Расчетные сечения проводов

Линия А-3 3-5 5-6 6-4 4-2 А-2 А-1
Сечение, мм2 174,64 90,05 84,19 21,85 154,38 260,58 106,04

 

В соответствии с полученными расчетными сечениями проводов выбираем марку провода и длительно допустимые токи.

 

Таблица 5.12 – Марка проводов и длительно допустимые токи

Линия Ток участка Сечение Число цепей Вид аварии Iав, А Iдоп, А
А-3 384,2 АС-240 2 Обрыв 1ц 384,2 605
3-5 180,09 АС-240 1 Обрыв А-2 466,55 605
5-6 92,61 АС-95 1 Обрыв А-2 286,46 330
6-4 24,03 АС-70 1 Обрыв А-2 193,85 265
4-2 169,82 АС-240 1 Обрыв 3-5 286,46 605
А-2 286,46 АС-240 1 Обрыв 3-5 572,92 605
А-1 233,27 АС-240 2 Обрыв 1ц 233,27 605

Выбранные провода удовлетворяют заданному условию.


5.5 Выбор сечений и марок проводов для варианта 5

 

Таблица 5.13 – Токи в линиях

Линия А-3 3-5 5-4 2-1 4-2 5-6 А-1
Ток, А 2∙223,86 243,59 39,48 222,95 106,31 2∙58,32 2∙228,11

 

Выбираем сталеалюминевые провода, для которых экономическая плотность тока:

 

.

 

Таблица 5.14 – Расчетные сечения проводов

Линия А-3 3-5 5-4 2-1 4-2 5-6 А-1
Сечение, мм2 203,51 221,45 35,89 202,68 96,65 53,02 207,37

 

В соответствии с полученными расчетными сечениями проводов выбираем марку провода и длительно допустимые токи.

 

Таблица 5.15 – Марка проводов и длительно допустимые токи

Линия Ток участка Сечение Число цепей Вид аварии Iав, А Iдоп, А
А-3 447,71 АС-240 2 Обрыв 1ц 447,71 605
3-5 243,59 АС-240 1 Обрыв 2-1 389,38 605
5-6 116,64 АС-70 2 Обрыв 1ц 116,64 265
5-4 39,48 АС-70 1 Обрыв 3-5 156,12 265
4-2 106,31 АС-95 1 Обрыв 3-5 262,43 330
2-1 222,95 АС-240 1 Обрыв 3-5 485,38 605
А-1 456,22 АС-240 2 Обрыв 1ц 456,22 605

 

Выбранные провода удовлетворяют заданному условию.


6. Определение потерь мощности в линиях

 

Воздушные линии электропередачи 110 кВ и выше длинной до 300 – 400км обычно представляются П – образными схемами замещения с сосредоточенными параметрами (рисунок 2.1):  – активное сопротивление учитывает потери активной мощности на нагрев провода,  – индуктивное сопротивление определяет магнитное поле, возникающее вокруг и внутри провода,  – активная проводимость учитывает затраты активной мощности на ионизацию воздуха (потери мощности на корону) и токи утечки через изоляторы, которыми для ВЛ можно пренебречь, – ёмкостная проводимость обусловлена ёмкостями между проводами разных фаз и ёмкостью провод–земля.

 

Рисунок 6.1—Схема замещения линии 110 кВ

 

Активное сопротивление определяют по формуле:

 

,  (6.1)

 

где —удельное сопротивление линии при 20°С, Ом/км;

l—длина линии, км.

При выполнении расчётов установившихся режимов сети отличие эксплуатационной температуры от 200С не учитывается, согласно ГОСТ 839-80.

Реактивное сопротивление определяют по формуле:

 

,      (6.2)

 

где – удельное сопротивление линии, Ом/км;

l – длина линии, км.

Реактивную проводимость определяют по формуле:

 

,  (6.3)

 

где – удельная ёмкостная проводимость, См/км.

 

Рисунок 6.2—Упрощённая схема замещения линии 110 кВ

 

При выполнении проектных расчётов установившихся нормальных режимов сетей с напряжениями до 110 кВ допустимо использовать упрощенные схемы замещения (рисунок 2.2), в которых удельные ёмкостные проводимости заменяют удельными зарядными мощностями соответствующих линий.

 

,  (6.4)


Таблица 6.1 – Марка и характеристики проводов

Марка провода АС-70 АС-95 АС-120 АС-240
Iдоп, А 265 330 390 610
r0, Ом/км 0,428 0,306 0,249 0,120
х0, Ом/км 0,444 0,434 0,247 0,405
b0, См/км∙10-6 0,0255 0,0261 0,0266 0,0281

 

Определяем параметры линии А-3:

 

Ом;

Ом;

 См.

 

Определяем потери активной и реактивной мощности в линии А-3:

 

 МВт;

 МВАр.

 

Аналогично находятся потери мощности в других линиях.

 

Таблица 6.2 – Параметры линий и потери мощности для варианта 1

Номер линии А-3 3-5 5-6 6-4 4-2 2-1 А-1
R, Ом 1,2 4,44 1,98 12,84 12,84 2,4 2,88
X, Ом 4,05 14,99 4,2 13,32 7,41 8,1 9,72
B, См∙10-6 1,12 1,04 0,27 0,77 0,8 0,562 0,67
ΔP, Мвт 0,68 0,71 0,12 0,028 0,54 0,4 1,9
ΔQ, МВАр 2,3 2,4 0,26 0,029 0,31 1,35 6,4
ΣP, МВт

3,43

ΣQ, МВАр

9,85

 

Таблица 6.3 – Параметры линий и потери мощности для варианта 2

Номер линии А-3 3-5 5-6 А-1 А-2 2-1 2-4
R, Ом 1,62 5,66 2,14 2,88 3,96 6,12 6,42
X, Ом 4,13 8,03 2,22 9,72 13,37 8,68 6,66
B, См∙10-6 1,1 1,93 0,51 0,67 0,93 0,52 1,53
ΔP, Мвт 0,81 0,71 0,09 0,64 0,59 0,18 0,41
ΔQ,МВАр 2,06 1 0,09 2,17 1,99 0,25 0,43
ΣP, МВт

3,43

ΣQ, МВАр

7,99

 

Таблица 6.4 – Параметры линий и потери мощности для варианта 3

Номер линии А-3 3-5 5-6 А-1 А-2 2-4
R, Ом 1,62 5,66 2,14 2,99 4,11 6,42
X, Ом 4,13 8,03 2,22 5,12 7,05 6,66

Продолжение таблицы 6.4

B, См∙10-6 1,1 1,93 0,51 1,28 1,76 1,53
ΔP, Мвт 0,81 0,71 0,09 0,49 0,85 0,41
ΔQ, МВАр 2,07 1 0,09 0,84 1,64 0,43
ΣP, МВт

3,36

ΣQ, МВАр

6,07

 

Таблица 6.5 – Параметры линий и потери мощности для варианта 4

Номер линии А-3 3-5 5-6 6-4 4-2 А-2 А-1
R, Ом 1,62 7,33 3,06 12,84 5,94 3,96 2,99
X, Ом 4,13 15,54 4,34 13,32 12,6 13,37 5,12
B, См∙10-6 1,1 1 0,26 0,77 0,81 0,93 1,28
ΔP, Мвт 0,72 0,71 0,08 0,02 0,51 0,98 0,49
ΔQ, МВАр 1,83 1,51 0,11 0,02 1,09 3,29 0,84
ΣP, МВт

3,51

ΣQ, МВАр

8,69

 


Таблица 6.6 – Параметры линий и потери мощности для варианта 5

Номер линии А-3 3-5 5-6 5-4 4-2 1-2 А-1
R, Ом 1,2 4,44 2,14 6,85 9,18 2,4 1,44
X, Ом 4,05 14,99 2,22 7,1 13,02 8,1 9,72
B, См∙10-6 1,12 1,04 0,51 0,41 0,78 0,56 1,35
ΔP, Мвт 0,72 0,79 0,09 0,03 0,31 0,36 0,9
ΔQ, МВАр 2,44 2,67 0,09 0,03 0,44 1,21 6,07
ΣP, МВт

3,2

ΣQ, МВАр

12,95

 


7. Выбор трансформаторов

 

Мощность трансформатора в нормальных условиях эксплуатации должна обеспечивать питание электрической энергией всех потребителей, подключенных к данной подстанции. Кроме того, нужно учитывать необходимость обеспечения ответственных потребителей (I и II категорий) электрической энергией и в случае аварии на одном из трансформаторов, установленных на подстанции. Следует отметить, что повреждения трансформаторов на понижающих подстанциях, сопровождающиеся их отключением, довольно редки, однако с их возможностью следует считаться, особенно если к подстанции подключены потребители I и II категорий, не терпящие перерывов в электроснабжении. Поэтому, если подстанция питает потребителей укачанных категорий, на ней должно быть установлено не менее двух трансформаторов. В случае аварии на одном из трансформа торов второй должен обеспечить полной мощностью названных потребителей. Практически это может быть достигнуто путем установки на подстанции двух трансформаторов, номинальная мощность каждого из которых, будет рассчитана на 70% максимальной нагрузки подстанции.

При оценке мощности, которая будет приходиться в послеаварийном режиме на оставшийся в работе трансформатор, следует учитывать его перегрузочную способность. В противном случае можно без достаточных оснований завысить установленною мощность трансформаторов и тем самым увеличить стоимость подстанции. В послеаварийных режимах допускается перегрузка трансформаторов до 140% на время максимума (не более 6 ч в сутки на протяжении не более 5 суток). Такая перегрузка может быть допущена при условии, что система обладает передвижным резервом трансформаторов. Следует учитывать, что при аварии на одном из параллельно работающих трансформаторов допускается отключение потребителей III категории. Практически это осуществимо в том случае если потребители III категории питаются по отдельным линиям.

Если вся нагрузка состоит из потребителей только III категории, на подстанции может быть установлен один трансформатор, рассчитанный на всю подключенную на момент максимума мощность. Некоторые потребители II категории, терпящие перерывы в электроснабжении, также могут питаться от однотрансформаторных подстанций, особенно при наличии в системе передвижного резерва трансформаторов. Трансформатор является надежным элементом электрической системы, выходящим из строя в результате аварии не чаше одного раза в 15 лет.

 

Таблица 7.1 – Типы выбранных трансформаторов

№ узла

Мощность нагрузки

S/1,4, МВ∙А

Тип и число трансформаторов

Р, МВт S, МВ∙А
1 40 44,44 31,74 2∙ТРДН-40000/110
2 20 22,22 15,87 2∙ТДН-16000/110
3 35 38,89 27,78 2∙ТРДН-40000/110
4 25 27,78 - ТРДН-25000/110
5 15 16,67 11,91 2∙ТРДН-25000/110
6 20 22,22 - ТРДН-25000/110

 

Таблица 7.2 – Характеристики выбранных трансформаторов

№ п/ст 1 2 3 4 5 6
Sт, МВ∙А 44,44 22,22 38,89 27,78 16,67 22,22
Тип трансформатора 2∙ТРДН-40000/110 2∙ТДН-16000/110 2∙ТРДН-40000/110 ТРДН-25000/110 2∙ТРДН-25000/110 ТРДН-25000/110
Sст, МВ∙А 40 16 40 25 25 25
Uв, кВ 115 115 115 115 115 115
Uн, кВ 10,5 10,5 10,5 10,5 10,5 10,5
ΔРх.х., кВт 36 19 36 27 27 27
ΔРк.з., кВт 172 85 172 120 120 120
ΔQх.х., кВАр 260 112 260 175 175 175
lх.х., % 0,65 0,7 0,65 0,7 0,7 0,7
Rтр, Ом 1,4 4,38 1,4 2,54 2,54 2,54
Хтр, Ом 34,7 86,7 34,7 55,9 55,9 55,9
Uк, % 10,5 10,5 10,5 10,5 10,5 10,5


2019-12-29 184 Обсуждений (0)
На выкатной тележке монтируются также трансформаторы напряжения ЗНОЛ–06–10У3 и разрядники, силовые предохранители, разъединители. 0.00 из 5.00 0 оценок









Обсуждение в статье: На выкатной тележке монтируются также трансформаторы напряжения ЗНОЛ–06–10У3 и разрядники, силовые предохранители, разъединители.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (184)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)