Мегаобучалка Главная | О нас | Обратная связь


Основные параметры аналогового интерфейса



2020-02-03 188 Обсуждений (0)
Основные параметры аналогового интерфейса 0.00 из 5.00 0 оценок




Параметр К, дБ КСН дБ fГР, кГц λ, дБ λТ, дБ Uш., мкВ δ, дБ I0, мкА
Значение 10 94 1 110 90 2 0,02 15

Примечания. – гарантированное затухание в полосе режекции; Т – затухание на тактовой частоте АЦП (fT=1 МГц); δ – неравномерность амплитудно-частотной характеристики в полосе пропускания.

 

Мультидифференциальные ОУ по энергетическим характеристикам практически идентичны традиционным активным элементам этого класса. Именно поэтому они в силу функционального и структурного многообразия в электронных устройствах могут оказаться наиболее перспективными. Действительно, как показывает приведенный выше пример активного фильтра, многие чрезвычайно полезные качественные показатели изделий могут быть получены без увеличения потребляемой мощности, а в ряде случаев позволяют использовать экономичные режимы работы активных элементов. Последнее наиболее важно при создании СБИС типа «система на кристалле». Именно поэтому представляется актуальным пересмотр ранее полученных схемо-технических решений различных функциональных устройств, ориентированных на микроэлектронную реализацию, например, как это сделано в секторе инструментальных усилителей [8].


Выводы и рекомендации

 


Изложенные выше результаты показывают, что предложенными методами структурного синтеза и оптимизации электронных схем, ориентированных на полупроводниковую технологию, можно всегда существенно уменьшить требования к соответствующим элементам и компонентам при сохранении других качественных показателей конечного продукта. Внимательный читатель и опытный схемотехник обратили внимание на то, что эти методы приводят к новым структурам; когда собственно микросхемотехника только начинается, необходимо внимательно изучить основные требования к базовым узлам структуры, разработать их схемотехническую реализацию под конкретную технологию, выполнить параметрическую оптимизацию с учетом иных ограничений и, наконец, осуществить схемотехническую интеграцию изделия в целом. Указанный комплекс задач выходит за рамки поставленной автором проблемы. Их естественность показывает, что монография может помочь только профессиональному схемотехнику, для которого понятийный аппарат и язык современной микросхемотехники являются «родной стихией». И тем не менее, этот тезис нуждается в определенных комментариях, пояснить которые можно на простом примере, которым и предшествовала книга.

Для уменьшения влияния частоты единичного усиления ОУ и соответствующей параметрической чувствительности необходимо использовать цепи собственной компенсации, а в качестве одного из примеров, демонстрирующих эффективность метода получения схема низкочувствительного звена полосового типа с двумя ОУ (рис. 1).

 

Рис. 1. Низкочувствительное звено полосового типа с собственной компенсацией

 

Пусть на базе указанной схемы необходимо реализовать избирательный усилитель (селективную часть СФ блока) с добротностью Q = При этой добротности, как видно из

 

               (1)

,                            (2)

где  условия собственной компенсации влияния частоты единичного усиления на частоту и затухание полюса совпадают, и требуемый коэффициент усиления неинвертирующего масштабного усилителя  Именно поэтому в практических схемах его можно заменить на повторитель напряжения, у которого частота единичного усиления значительно превышает соответствующий параметр ОУ. Таким образом, как это видно из (1) и (2) при , условие компенсации выполняется при


.                 (3)

Приведенная оценка хорошо согласуется с теми погрешностями реализации параметров схемы, которые обусловлены влиянием второго полюса ОУ. Таким образом, при создании ОУ и повторителя напряжения можно руководствоваться как полученной оценкой чувствительности основы параметров полюса, так и условием низкого влияния повторителя напряжения (f2>5f1). Кроме этого, как видно из рис. 1, настоящий повторитель может иметь несогласованные уровни постоянного напряжения на своих входах и выходе. Именно эти особенности позволяют упростить схемотехническую реализацию избирательного усилителя. Так, цепь компенсирующей обратной связи можно выполнить на базе простейшего дифференциального каскада с коэффициентом усиления, равным единице по каждому из входов. Однако для реализации требуемой добротности:

 

.                                            (4)

 

И минимальное численное значение сопротивления R2 будет ограничиваться влиянием выходного сопротивления того каскада. В этой связи наиболее приемлемое решение общей задачи схемотехнического проектирования связано с применением в компенсирующей цепи схемы с глубокой отрицательной обратной связью. Одно из возможных схемотехнических решений приведено на рис. 2.


Рис. 2. Избирательный усилитель с собственно компенсацией влияния f1 ОУ

 

Если Rc >> h11OЭ, то

                          (5)

                          (6)

 

и при использовании блокирующего конденсатора С (Rи2~=0) точность реализации требуемого К0 определяется в основном идентичностью режимов работы V1 и V2 (стабильностью отношения крутизны S1 и S2). При К0<2Q2–1 это свойство обеспечивается глубокой обратной связью через Rи2 V2.

Рассмотренным примером возможные схемотехнические способы реализации структуры не ограничиваются. Так, при необходимости иметь низкое входное сопротивление (токовое управление) можно в структуре V3 использовать дополнительный эмиттер, тогда:

 

.                                        (7)


Конечно, таких особенностей практического использования новых структур может быть достаточно много.

Не менее важную проблему, возможно методологического характера, составляют новые задачи синтеза оптимальных или рациональных структур при иных исходных предпосылках, но в рамках существующей парадигмы. Более чем полувековой опыт развития схемотехники показывает, что эволюция технологии компонент очень часто заставляет пересматривать критерии схемотехнического проектирования, поэтому завершать исследования набором рекомендаций просто нецелесообразно. И все же один важный вывод, непосредственно относящийся в проблеме структурного синтеза, схемотехники дают. Практически важные и технологически приемлемые свойства схем обеспечивает обратная связь. Можно достаточно уверенно утверждать, что обратная связь оказалась «верным другом» схемотехники. И чем больше контуров обратной связи, тем больше параметрических «степеней свободы» и выше качественные показатели конечного устройства. Но обратные связи нужно использовать аккуратно, грамотно и целенаправленно, так, чтобы взять из их сочетаний только лучшее и парировать негативные последствия. Действительно, компенсирующие обратные связи как на компонентном, так и на функциональном уровнях часто являются положительными, а точнее – имеют положительное возвратное отношение. И если не рассматривать их в совокупности с другими контурами и не анализировать их предельную глубину, то можно выделить много специфических негативных последствий и в конечном итоге просто не решить вполне конкретную задачу схемотехнического проектирования. Однако, когда решение в рамках процедуры структурного синтеза найдено, легко установить, что глубина таких контуров в целом зависит от конкретного «паразитного» параметра, а негативы «степеней свободы» проявляются далеко за пределами полосы расширенной области частот. Однако в электронике любое новое качество сопровождается определенными потерями. Важно сохранить суммарный позитивный результат. Материал настоящей монографии этот тезис только подтверждает.

Именно этот непротиворечивый вывод и позволяет на сформулированную проблему смотреть с определенным оптимизмом. При возникновении принципиально новых задач необходимо предварительно решать ряд вспомогательных проблем. Во-первых, путем сопоставительного анализа элементного и компонентного базиса выделить те схемотехнические и топологические конфигурации, которые можно рассматривать в качестве базисных структур. Именно эти структуры составят фундамент будущей схемотехники. Детальное изучение таких структур позволит также выделить те побочные «негативные» факторы технологических процессов и физических принципов преобразования сигнала, которые являются доминирующими и влияние которых на качественные показатели изделий необходимо впоследствии минимизировать. При кажущейся простоте эта задача характерна рядом «подводных камней»: сложность моделей компонент, их идентификация, проблемы адекватности физических моделей и т.п. Однако современные схемотехнические САПР и средства моделирования, самостоятельность их развития позволяют достаточно эффективно осуществить ранжирование базисных структур по практическим приоритетам и показателям качества. Законы физики подсказывают, что таких структур не может быть много. Если такая задача решена, то дальнейшие исследования можно значительно формализовать.

Во-вторых, из приоритетных базисных структур необходимо получить обобщение структуры электронных схем, которые образуют полный сигнальный граф. При этом дополнительная (коммутирующая) часть обобщенной структуры может состоять из пассивных компонентов, осуществляющих суммирование сигналов – напряжений или токов на входах базисных структур. Такие обобщенные структуры должны обладать свойством полноты. Именно это свойство гарантирует, что любые частные решения задачи могут быть получены из обобщенной структуры методом усечения – устранение тех связей, которые не приводят к решению поставленной задачи. Конкретизация процедуры усечения и составляет существо задачи структурного синтеза.

В-третьих, из целей проекта необходимо сформировать меру различия схем – свертку критериев качества. Несмотря на то что этот этап является подготовительным, он требует детального анализа задачи синтеза. Неверно сформулированный критерий, противоречивый, без необходимых параметрических ограничений, свойств реализуемости и т.п. не позволяет достичь цели проекта. В этом отношении важное значение приобретает изучение (детальный анализ) обобщенных структур и выявление их фундаментальных свойств, связанных с сущностью базовой задачи. Здесь уместно напомнить, что, как было показано в монографии, чувствительность реализуемой передаточной функции Ф(р) и ее приращение, вызванное конечностью усиления сигнала базисной структуры Kt(p), всегда устанавливают связь некоторого набора локальных передаточных функций Hi(p), Ft (p), Fu(p):

 

 (8)

. (9)

 

Изучение степени влияния этого набора на базовые критерии проекта позволят не только уменьшить их число и снять основные противоречия, но и при необходимости обосновать целесообразность пересмотра базисных структур, придав им предварительно некоторые свойства, отображаемые в функциях Кi(р). Важным аргументом в реализации такого подхода является возможность более строгой формализации процедуры усечения. В некоторых случаях, как это было показано в монографии, общая задача значительно упрощается и сводится к модернизации эвристических схем путем добавления (расширения) новых функциональных связей, которые придают схеме необходимые свойства. Важно отметить, что такие достаточно общие выводы обогащают общую теорию электронных схем в ее поступательном развитии.




2020-02-03 188 Обсуждений (0)
Основные параметры аналогового интерфейса 0.00 из 5.00 0 оценок









Обсуждение в статье: Основные параметры аналогового интерфейса

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (188)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)