Мегаобучалка Главная | О нас | Обратная связь


Сверхзвуковая сепарация в технологии переработки газового углеводородного сырья.



2020-02-03 366 Обсуждений (0)
Сверхзвуковая сепарация в технологии переработки газового углеводородного сырья. 0.00 из 5.00 0 оценок




Для подготовки газа, добываемого на газовых или нефтяных месторождениях, к дальнейшей транспортировке потребителям используются традиционные способы, заключающиеся в из­влечении тяжелых углеводородов. К ним отно­сятся:

· абсорбционное извлечение;

· адсорбция на твердых поглотителях;

· низкотемпературная конденсация (НТК).

Первый способ — один из старейших (с 1913 г.). В качестве абсорбента в нем исполь­зуют керосиновую или дизельную фракции. Производственники называют ее «маслом», и поэтому установки получили название маслоабсорбционных.

НТК — основной способ выделения углево­дородов, заключаюпдийся в конденсации угле­водородов при понижении температуры за счет дросселирования газа (эффект Джоуля-Томсона) или его расширения в турбодетандере (изоэнтропийный процесс). Для достижения более низких температур (-70°С) используется искусственное охлаждение пропаном.

Низкотемпературная конденсация достаточ­но энергоемка, но при этом достигается макси­мально возможное извлечение жидких углеводо­родов и, соответственно, очистка и осушка газа.

В последнее время в России и за рубежом уделяется все большее внимание внедрению но­вых технологий, основанных на законах физики, термодинамики, аэродинамики. Например: регулируемые вихревые трубы;

волновой детандер-компрессор;

сверхзвуковая сепарация.

В данной статье подробно изложены вопросы, связанные с разработкой и промышленным внедрением последней техноло­гии. В 2002 г. ОАО «АК «Сибур» приступило к опытно-промыш­ленному внедрению новой технологии выделения жидких углеводородов из природного и попутного газа, получившей название сверхзвуковой сепа­рации — Super Sonic Separator (3S). Разработчик и лицензи­ар данной технологии — ком­пания TransLang Technologies Ltd. — TLT (Канада). Оператор проекта в России — компания «Фонд деловое сотрудничество "Восток-Запад". Центр "ЭНГО"».

«ЗS»-Texнoлoгия компании TLT уже запатентована в России, США, Австралии, Евразии. Центр «Энго» имеет лицензированные права на ее использование в России.

Развитие этой техноло­гии основано на достижени­ях аэродинамики, связанны» с аэрокосмической техникой. «3S»-CenapaTop (рис. 4) представляет собой участок трубо­провода. Для простоты обслу­живания и замены внутренних устройств сепаратор собран из отдельных сегментов трубопро­вода, соединенных фланцами. Газовый поток под избыточным давлением поступает в сепара­тор, закручивается специаль­ным устройством, разгоняется до сверхзвуковых скоростей в сопле и затем дросселируется. За счет резких перепадов давления (сжатие и расширение), пониже­ния температуры в рабочей зоне происходит разделение потока на газ и жидкость. Последняя отбирается через специальные устройства, а газовый поток поступает в диффузор, где его давление выравнивается, после чего газ направляется потреби­телям.

В результате сепарации по­лучается очищенный газ и жид­кий поток с остатком растворен­ных в нем легких газообразных углеводородов С12, т.е. в се­паратор поступает смесь «жид­кость в газе», а из него — «газ в жидкости».

В зависимости от решаемых задач в «3S»-технологии исполь­зуются до- или сверхзвуковые сопла, различные типы закручивающих устройств и диффузоров. Стенка рабочей зоны может быть снабжена специальной перфорацией для дополнительного отбора жидкости.

На базе этих разработок были созданы соответствующие экспериментальные установ­ки сепарации природного газа, которые прошли тестирование на испытательных стендах. Взяв за основу разработанную и запатентованную в Канаде установку производительнос­тью 7-9 кг/с по входному по­току (около 500 млн нм3/гoд), работающую на испытатель­ном полигоне вблизи г. Калгари (Канада), на одном из предприятий Московской обл. был раз­работан и изготовлен экспери­ментальный стенд (рис. 2) с ус­тановкой «3S»-сепаратора про­изводительностью 1,5-2,5 кг/с по входному потоку, рабочим давлением до 150 атм. и воз­можностью изменения началь­ной температуры от -60 до

+20 0С.

Для выяснения эффектив­ности «3S»-сепаратора при па­раметрах газа, используемых в расчетах, были проведены спе­циальные эксперименты на газодинамическом стенде. На нем было проведено более 400 ис­пытаний при различных темпе­ратурах, давлениях и составах газовых смесей. Испытаны до-, около- и сверхзвуковые режимы сепарации.

Результаты эксперимен­тов приведены в табл. 1 и 2: в табл. 1 — компонентный состав газа на входе в модельный сепа­ратор (точка 1) и выходе из него (точка 2), в табл. 2 — режимные параметры испытаний, а также значения разности измеренных объемных концентраций це­левых компонентов до и после очистки (Δα=α12 , где α1 и α2 являются суммой концентраций компонентов 3-9, см. табл. 1).

Для сравнения в табл.2 при­ведены результаты очистки газа изоэнтропийным способом (Δαs) и дросселированием (ΔαD):

Δαs = α12S ; ΔαD = α12D

где α2S и α2D — расчетные зна­чения суммарной концентрации компонентов  3-9 для изоэнтропийного процесса, соответству­ющего расширению газа в иде­альном турбодетандере, и для процесса дросселирования соот­ветственно.

Разность концентраций це­левых компонентов до и после очистки (Δα) по «3S»-технологии близка к значениям для изоэнтропийного процесса, в то время как для процесса дросселирова­ния — значительно выше.

 

Рисунок 4. Схема экспериментального стенда.

1 - рабочий газ; 2 — теплообменник; 3 — жидкие компоненты;

4,9,10,14 — трубопроводы; 5 — смеситель;

б — входной отсек; 7 — сепарационный отсек;

8 — разделительный отсек; 11 — шнековый сепаратор;

12 — емкость для жидкости; 13 — уровнемер;

15 — трубы Вентури; 16 —дроссельные шайбы;

17 —расходомерные сопла; 18 — подача смеси на сжигание;

19 — турбинный расходомер; 20 — клапаны;

21 —- емкость с целевыми компонентами; 22 — сжатый азот;

23 — трубопровод для выхода жидкости.

Приборы: П1, П2 — пробоотборники; Т1-Т6 — термопары; Р1-Р10 — датчики давлений;

API, АР2 — датчики перепада давлений для труб Вентури

В сравнении с традиционными технология­ми (JT-клапан — дроссель) установки «3S» при любых условиях работы превосходят по эффек­тивности: выделение тяжелых углеводородов увеличивается не менее чем на 30% (притом же перепаде давления), а экономия компрессорных мощностей при решении задач подготовки газа к транспортировке достигает 50-70%, вследствие чего уменьшаются эксплуатационные издержки. Они эффективно работают и в таких условиях, когда JT-клапан неприменим.

На рис.3 представлен график сравнительной эффективности «3S»-установки и JT-клапана при сепарации газового потока для одной из се­рий испытаний в дозвуковом режиме.

 

Рисунок 5. Степень извлечения тяжелых углеводородов по «3S» (эксперимент) и JT (расчет) – технологиям, %.

Каждой точке на этом графике соответствует резуль­тат испытания «3S»-установки. При этом со­ответствующее значение по вертикальной оси означает степень извлечения тяжелых угле­водородов, достигнутую в этом эксперименте, а по горизонтальной оси — расчетную степень извлечения для JT-клапана притом же пере­паде давления.

Уже сейчас (на ранней стадии развития технологии) схемы НТК с использованием «3S»-сепаратора превосходят по эффективности схемы с использованием турбодетандеров (изоэнтропийный процесс) в случае низкого и уме­ренного расхода газа и для достаточно богатых по содержанию соответствующих компонентов га­зов. На рис.4 представлен сравнительный анализ использования двух таких схем с одинаковыми входными и выходными параметрами.

«3S»-Сепараторы можно эффективно исполь­зовать во многих ситуациях, когда турбодетандеры неприменимы по техническим (например, высокое входное давление) или экономическим (выделение пропан-бутанов на месторождениях малого и среднего объема) соображениям.

· «3S»-Технология обладает потенциалом ис­пользования при решении следующих задач га­зовой промышленности:

· подготовка газа к транспортировке (дегид­ратация и выделение тяжелых углеводородов);

· извлечение пропан-бутанов (LPG), H2S и CO2, этана;

· сжижение метана.

 

Компонеты

Концентрация, % об.

Пуск 1

Пуск 2

Пуск 3

Пуск 4

Пуск 5

Т. 1

Т. 2

Т. 1

Т. 2

Т. 1

Т. 2

Т. 1

Т. 2

Т. 1

Т. 2

1

Метан

92,26

95,71

94,86

96,3

93,48

95,1

94,63

96,29

95,18

96,05

2

Этан+этилен

0,87

0,84

0,85

0,83

0,96

0,93

0,94

0,91

0,92

0,89

3

Пропан+пропилен

3,07

1,62

1,62

1,16

1,73

1,31

1,27

1,12

1,25

0,98

4

изо-Бутан

0,5

0,18

0,34

0,16

0,58

0,34

0,36

0,16

0,26

0,13

5

н-Бутан

1,05

0,31

0,73

0,3

1,02

0,52

0,68

0,3

0,57

0,27

6

н-Бутанен

0,02

0,01

0,01

0,004

<0,005

<0,003

<0,005

<0,003

<0,005

<0,005

7

изо-Бутен

0,01

<0,003

0,005

<0,003

<0,005

<0,003

<0,005

<0,003

<0,005

<0,005

8

цис-Бутен

0,04

0,01

0,03

0,01

0,02

0,01

0,02

0,01

0,02

<0,005

9

Метил-бутен+транс-бутен

<0,003

 

0,02

<0,003

0,03

0,01

0,03

<0,005

0,02

<0,005

10

Кислород+аргон

1,19

0,43

0,75

0,37

0,33

0,76

0,88

0,36

0,61

0,44

11

Азот

0,92

0,84

0,74

0,82

0,8

0,97

1,2

0,8

1,12

1,18

12

Диоксид углерода (СО2)

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

 

Таблица 6. Компонентный состав газа до и после сепарационной отчистки.

В настоящее время созданы и испытаны установки, способные эффективно извлекать углеводороды С5+ и С3+. Ведутся испытания «3S»-установки, предназначенной для осушки природного газа от паров воды. Проводятся ин­тенсивные экспериментальные исследования по дальнейшему повышению эффективности «3S»-установок для выделения С3+ и созданию установки для выделения этана.

На основе предлагаемой технологии в сочета­нии с традиционным оборудованием (теплообмен­ники, газожидкостные сепараторы, холодильни­ки, дистилляционные и ректификационные ко­лонны и т.д.) созданы высокоэффективные схемы низкотемпературной конденсации, которые можно использовать на промыслах и газоперерабатывающих заводах, в том числе при переработке газа на морских платформах.

«3S»-Технологии имеют некоторые преимущества по сравнению с традиционными методами очистки природного газа:

· малогабаритность и, как следствие, — возможность размещения в достаточно ограни­ченном объеме, легкого включения в комплекс другого оборудования, снижение стоимости монтажа;

· низкие капитальные и эксплуатационные затраты;

· экологическая безопасность;

· отсутствие движущихся деталей;

· отсутствие необходимости постоянного обслуживания;

· возможность использования энергии пласта.

Достигнутые результаты позволяют гово­рить о том, что технологии с использованием «3S»-сепараторов превзойдут эффективность соответствующих комплексов, основанных на турбодетандерах, в широком диапазоне возможных применений, в том числе при выделении этановой фракции.

 

 



2020-02-03 366 Обсуждений (0)
Сверхзвуковая сепарация в технологии переработки газового углеводородного сырья. 0.00 из 5.00 0 оценок









Обсуждение в статье: Сверхзвуковая сепарация в технологии переработки газового углеводородного сырья.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (366)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)