Мегаобучалка Главная | О нас | Обратная связь


Опасности, которыми не следует пренебрегать



2020-02-03 192 Обсуждений (0)
Опасности, которыми не следует пренебрегать 0.00 из 5.00 0 оценок




Восторженно предвкушая те положительные изменения, которые принесет с собой промышленная революция, не будем столь наивны, чтобы не задуматься о возможных опасностях и проблемах. Многие крупные ученые современности не зря пытаются привлечь внимание не только к позитивным перспективам будущего, но и к возможным негативным последствиям. Билл Джой, сооснователь и ведущий ученый Sun Microsystems в Пало Альто, штат Калифорния, утверждает, что исследования в области нанотехнологий и других областях должны быть остановлены до того, как это навредит человечеству. Его опасения поддержала еще одна группа нанотехнологов, выпустив так называемый “Foresight Guidelines” – “руководящие линии Института предвидения”. Как и Джой, они считают, что стремительный рост нанотехнологий выходит из-под контроля. Но, вместо простого запрета исследований в этой области они предложили установить правительственный контроль над опасными исследованиями. Такой надзор, утверждают они, сможет предотвратить случайную катастрофу. Страхи перед нанотехнологиями начали появляться с 1986 года, после выхода в свет “Машин созидания” Дрекслера, где он не только нарисовал утопическую картину нанотехнологического будущего, но и затронул “обратную сторону” этой медали. Одну из проблем, которая представлялась ему наиболее серьезной, он назвал “проблемой серой слизи” (“grey goo problem”). Опасность серой слизи в том, что нанометровые ассемблеры, вышедшие из-под контроля в результате случайной или намеренной порчи систем управления, могут начать реплицировать сами себя до бесконечности, потребляя в качестве строительного материала все на своем пути, включая леса, заводы, домашних животных и людей. Расчёт показывает, что теоретически такой ассемблер со своим потомством окажется в состоянии переработать всю биомассу Земли за считанные часы (правда, без учёта времени на перемещение по поверхности планеты). Предварительный анализ показывает, что ассемблер может быть сделан достаточно надёжным, чтобы вероятность появления самовоспроизводящейся ошибки оказалась пренебрежимо малой. Однако неразумно полностью исключить опасность преднамеренного программирования ассемблера террористом или хулиганом, подобным современным создателям компьютерных вирусов. В своих опасениях Джой опирается на то, что гипотетические части футуристических микромашин уже выпущены и встают на свои места. “Один из компонентов ассемблера – электронное устройство молекулярных размеров, – говорит Джой, – сейчас уже реализовано”. Далее он узнал, что саморепликация уже давно работает вне биологических систем: исследователи показали, что простые пептидные молекулы могут провоцировать свою собственную репродукцию. “Вот почему самореплицирующиеся машины становятся все более реальными, - заключил Джой. _ И от их реальности веет угрозой”. Другие ученые опровергают страхи перед “серой слизью”, говоря о принципиальной невозможности преодолеть все практические трудности в создании подобных механизмов. “Все это высосано из пальца”, - утверждает Блок. Будет ошибкой отталкиваться от того, что раз простые молекулы имеют способность к репродукции, то инженеры смогут построить сложные наномашины, умеющие делать то же самое. Что касается биологических систем, то они, конечно, способны к репликации, но, во-первых, они далеко не нанометровых размеров, а во-вторых, фантастически сложны по своей структуре, поскольку включают в себя отдельные системы для хранения и копирования генной ин_ формации, системы энергопроизводства, синтеза белков и др. “Даже природа не сделала нанометрической структуры, способной к репликации”, _ замечает Виола Вогель, наноученый Университета Вашингтона, штат Сиэтл. Тем не менее, возможны другие сферы злоупотребления достижениями нанотехнологий. На одной из встреч, посвященных обсуждению дальнейшего развития нанотехнологий, представители научного общества, исследовательских центров и государственных агентств были собраны для обсуждения проблем в этой области, вызывающих беспокойство. Особенно остро вставали вопросы следующего типа:

Способна ли образовательная система обучить достаточно нанотехнологических специалистов?

Может ли прогресс нанотехнологий подорвать традиционный бизнес и оставить тысячи людей без работы?

Может ли снижение стоимости продукции благодаря нанотехнологиям и молекулярной биологии сделать их легкодоступными для террористов, чтобы разработать опасные микроорганизмы?

Каким будет эффект от вдыхания некоторых веществ, которые в настоящее время формируются в молекулярном масштабе? Исследования показали, что та же нанотрубка, представляющая собой соединение сверхтонких игл, имеет структуру, похожую на асбест, а этот материал при вдыхании вызывает повреждение легких.

Что случится, если в окружающую среду будет выпущено большое количества наноматериала, начиная от компьютерных чипов и заканчивая краской для самолетов? Не будут ли наноматериалы вызывать аллергию?

Когда Майкл Фарадей создавал коллоидную суспензию золота, состоящую из крошечных частиц металла, он увидел, что ее цвет менялся на фиолетовый. Значение этого открытия очень важно для нанотехнологии. Не окажутся ли материалы, считавшиеся безопасными в обычной форме, опасными для здоровья, когда их используют в форме наночастиц? Теоретически они могут оказаться более химически активными.

Не приведет ли вторжение наночастиц в наши тела к непредсказуемым последствиям? Они могут быть меньше белков. Что случится, если наночастицы вызовут пересворачивание белка? Проблемы со сворачиванием белка могут вызвать, например, болезнь Альцгеймера.

Эти и другие вопросы, стоящие сегодня перед исследователями, действительно очень актуальны и важны. В бешеной гонке нанотехнологий ученые должны взять на себя всю полноту ответственности за жизнь и здоровье других людей, чтобы не оказаться беззаботными фанатиками, совершившими “революцию”

только лишь “во имя революции”, не утруждая себя размышлениями о возможных трагических последствиях и катастрофах.

По всем этим причинам исследование наноэффектов новых технологий будет требовать принципиально новых методов и междисциплинарного подхода.

Нано на стыке наук

 

Если достижения ушедшего века позволяют говорить, что ХХ век был веком узкоспециализированных профессионалов, то сегодня, поступая в то или иное учебное заведение, молодой человек не может быть абсолютно уверен, что профиль, на который он собирается потратить 5 лет своей жизни, лет через 5_10 не окажется никому не нужным “старьем” в свете современных технологий.

“Так как же быть?”, - спросите вы. Неужели традиционное профессиональное образование может обесцениться настолько, что станет не актуальным на рынке труда? Конечно, нет, но на современном этапе профессионализма в какой-то узкоспециализированной профессии будет явно не хватать. Как вы, наверное, уже поняли, нанотехнологии - это не просто отдельная часть знаний, это масштабная, всесторонняя область исследований. Ее достижения касаются всех сфер жизнедеятельности человека. И поэтому лидирующее положение в будущем, естественно, будут занимать люди, обладающие фундаментальным образованием, основанным на междисциплинарном подходе. Вероятно, постепенно эта тенденция будет распространяться и на вузовское образование, побуждая составителей учебных программ объединять множество фундаментальных дисциплин в одном курсе. Но зачем же ждать, когда это сделают академики из Минобразования, когда у нас сегодня есть все возможности самим развиваться в разных направлениях, включая не только естественнонаучный профиль, но и гуманитарный?

К сожалению, современная система нацелена на формирование узкоспециализированных "винтиков", а не самостоятельно мыслящих и гармонично развитых людей. Нередко можно встретить человека, прекрасно разбирающегося, например, в программировании, но при этом совершенно не знакомого с достижениями современной биологии, или наоборот. Поэтому, надеюсь, читатель простит меня за небольшой "ликбез" по раз_ личным направлениям современной науки и техники. Ярким примером междисциплинарного мышления, достигшего выдающихся результатов в различных областях науки и искусства, являлся гений Леонардо да Винчи. Его нельзя называть только ученым, только художником, только архитектором или только инженером. Леонардо да Винчи своим примером показал возможность плодотворного сочетания различных знаний и умений в одном человеке, что бы там ни утверждали адепты “узкоспециализированного подхода”. Кстати, если говорить о связи нанотехнологий с фундаментальными науками, то можно сказать, что практически любой предмет, из тех, что изучаются в школе, так или иначе будет связан с технологиями будущего. Самой очевидной представляется связь “нано” с физикой, химией и биологией. По-видимому, именно эти науки получат наибольший толчок к развитию в связи с приближающейся нанотехнической революцией.

Но не только. Без развития информационных систем (особенно таких областей информатики, как искусственный интеллект, компьютерное моделирование, робототехника и т.д.), фундаментальной базой которых является математический аппарат, невозможно проектирование и создание ассемблеров и других устройств наноэлектроники. Эколог будущего также не останется без работы. Напротив, прогресс в сфере нанотехнологий, будет ставить перед ним все больше вопросов и задач: от автоматических наносистем охраны окружающей среды до сверхточного прогнозирования и борьбы с экологическим загрязнением и природными катаклизмами. Бурное освоение космоса может дать совершенно новый материал для астрономических исследований и гипотез. Историки и обществоведы будут изучать характерные черты и проблемы “нанотехнологического общества” как ледующего за “информационным” в цепочке общественно_ исторических формаций. Основы безопасности жизнедеятельности, возможно, станут одним из актуальнейших направлений будущих исследований. Психологи и социологи будут решать множество вопросов, связанных с адаптацией всех “неподготвленных” к неожиданным последствиям нанореволюции.

Возросшие требования к образованию, потребность в новых методах и концепциях обучения потребует от будущих учителей новаторства и активности. Перед философами, экономистами и политологами встанет множество новых вопросов, требующих нетрадиционных решений в условиях нанотехнического прогресса. Музыка, изобразительное искусство, литература, балет, театр и все, что относится к выражению творческого потенциала человека, всегда стояли несколько особняком от научно-технического прогресса. С одной стороны, это говорит о том, что стремление человека к прекрасному, возвышенному _ извечно и что ни_ какие достижения научно-технического прогресса не в силах уменьшить в глазах человека той ценности и притягательности, которой обладают такие нравственные категории, как доброта, красота, истина, благородство, честность, творчество, любовь.

С другой стороны, во все времена искусство пыталось отразить современное состояние общества, не отставая от научно-технического прогресса в своём индивидуальном поиске новых средств и форм выражения. Так, в Средние века отражение теологической морали, господствовавшей во всех сферах общественной жизни, можно увидеть во всех образцах культуры того времени, будь то живопись, музыка или литература. Эпоха Возрождения, провозгласившая человека венцом творения и воспевающая его божественное происхождение в проявлении чисто “человеческих” качеств, также оставила не_ мало свидетельств такого мировоззрения в произведениях искусства того времени. Кинематограф, литература и поэзия Советского периода нашей с вами истории также проникнуты идеями и лозунгами социализма и коммунизма. Опять же, современное искусство позиционирует себя как “искусство новых технологий” и использует все последние достижения компьютерной техники. Медиа-арт, веб-арт, компьютерная графика, голография – наиболее актуальные на сегодняшний день направления. Иными словами, искусство шествует вслед за прогрессом, не желая оставаться “за бортом” и стремясь всегда адекватно отражать окружающую нас действительность. Таким образом, перспективы развития науки и техники также определяют пути искусства. Кстати, в 2001 году японские учёные, используя передовые лазерные технологии, создали самую маленькую в мире скульптуру. Она изображает разъярённого быка, разворачивающегося для атаки.

 

 

Размеры “микробыка” впечатляют: 10 мкм в длину и 7 мкм в высоту– не больше, чем у красных кровяных телец человеческой крови. Увидеть его можно только в сверхмощный микроскоп. При “высечении” скульптуры использовались два лазера, которые работали в инфракрасном диапазоне и по специальной программе обрабатывали заготовку из полимера, затвердевавшего только под воздействием лазерного луча. Почему бы этому бычку не положить начало новому направлению в области наноскульптуры? И кто знает, может быть не за горами тот день, когда “Битлз” нового поколения поразят весь мир новым музыкальным “нано”-течением…


Заключение

 

Нанонаука основана на изучении, создании и модифицировании объектов, которые включают компоненты размерами менее 100 нм хотя бы в одном измерении и в результате получают принципиально новые качества. Эта отрасль знаний относительно молода и насчитывает не более столетия. Первым ученым, использовавшим измерения в нанометрах, принято считать Альберта Эйнштейна, который в 1905 году теоретически доказал, что размер молекулы сахара равен одному нанометру (10~9м).

Идею же создания специальных приборов, способных проникнуть в глубину материи до границ наномира, выдвинул выдающийся американский инженер-электрик и изобретатель, физик, философ сербского происхождения Никола Тесла. Именно он предсказал создание электронного микроскопа.

Наноструктурные материалы могут найти самые разнообразные применения в автомобильной промышленности, прежде всего, в производстве лаков, легких конструкций, новых приводных устройств, амортизаторов и т. п.

Важнейшими свойствами наноструктур, отличающими их от обычных материалов, являются повышенная диффузионная и миграционная способность атомов, молекул веществ и электронов по поверхности твердых наноструктур, а для жидких наноструктур - ускоренная диффузия внутри них, повышенная прочность изолированных твердых наноструктур и способность твердых наноструктур к самоорганизации и самосборке.

Автопромышленность стала одной из первых отраслей, где быстро поняли выгоду нанотехнологий. В автомобиле сложно изобрести что-то принципиально новое; его основные элементы десятилетиями остаются все теми же — кузов, двигатель, подвеска, тормозная система, электрооборудование... приходится лишь совершенствовать каждый компонент. Концепт-кары ведущих мировых автодизайнеров поражают футуристичностью форм и технических решений. А воплощение в жизнь смелых идей уже невозможно без применения нанотехнологий.

Автомобильная промышленность проявляет большой интерес к нанотехнологиям, обеспечивающими новые возможности значительного уменьшения веса, улучшения эксплуатационных качеств, внешнего вида и пригодности к переработке для вторичного использования. Также исследуются новые направления использования нанокомпозитных материалов. Автопром лидирует в нанореволюции. Новый компаунд фторполимера с нанотрубками применяется при изготовлении уплотнительных колец для топливной системы автомобилей.

Осознание стратегической важности нанотехнологий привело к тому, что в разных странах на уровне правительств и крупнейших фирм созданы и успешно выполняются программы работ по нанотехнологиям. В России фундаментальные исследования по нанотехнологии проводятся по нескольким программам. Наиболее крупные из них: программа “Физика наноструктур”, руководимая академиком Ж.И. Алферовым, и “Перспективные технологии и устройства в микро- и наноэлектронике”, руководимая академиком К.А. Валиевым. По последним данным, о состоянии российской наноиндустрии можно сказать следующее: достигнуты высокие результаты в области создания нанотехнологических приборов и установок.

Благодаря прорыву в области производства микроскопов современные ученые могут манипулировать атомами и располагать их так, как им заблагорассудится. Нанотехнологии и наноустройства являются закономерным шагом на пути совершенствования технических систем. Нанотехнология станет основой новой промышленной революции, которая приведет к созданию устройств в 100 раз более прочных, чем сталь и не уступающих по сложности человеческим клеткам. Уже создаются и будут создаваться устройства, функциональные возможности которых определяются необычными свойствами новейших материалов. Благодаря обработке на атомарном уровне, привычные материалы будут обладать улучшенными свойствами, постепенно становясь все легче, прочнее и меньше по объему.

Нанотехнологии - это не просто отдельная часть знаний, это масштабная, всесторонняя область исследований. Возросшие требования к образованию, потребность в новых методах и концепциях обучения потребует от будущих учителей новаторства и активности. Перед философами, экономистами и политологами встанет множество новых вопросов, требующих нетрадиционных решений в условиях нанотехнического прогресса. Искусство шествует вслед за прогрессом, не желая оставаться “за бортом” и стремясь всегда адекватно отражать окружающую нас действительность. Таким образом, перспективы развития науки и техники также определяют пути искусства.

 


Приложения.

Задача 1.

 

Частицы с массой m и энергией E движутся слева на потенциальный барьер. Найти: а) коэффициент отражения R этого барьера при ; б) эффективную глубину проникновения частиц в область x>0, при , т.е. расстояние от границы барьера до точки, где плотность вероятности нахождения частицы уменьшается в e раз.

 

Дано: СИ Решение:
m E

При x<0 решение уравнения Шредингера(рис.) имеет вид: , где , а коэффициенты  и  являются комплексными амплитудами падающей и отраженной волн соответственно.

Отношение квадрата модуля амплитуды отраженной волны  к квадрату модуля амплитуды падающей волны  определяет коэффициент R, т.е. .

При  решение уравнения Шредингера в области x>0 должно иметь вид , где , = . При  решение уравнения Шредингера в области x>0, уравнение имеет вид  , где .

Ответ: а) при ; б)

Найти: R=?  

Задача 2.

 

Найти для электрона с энергией E вероятность D прохождения потенциального барьера, ширина которого равна 1 и высота , если барьер имеет форму, показанную: а) рисунок 1; б) рисунок 2.

 

Дано: СИ Решение:
E  

 

 

Рис. 1. Рис. 2.

Для потенциала, изображенного на рисунке 1, при  и поэтому:

.

Для потенциала, изображенного на рисунке 2,  при . Точка  определяется из условия , откуда получаем .

.

Ответ: а) ; б)

Найти: D=?  

 


Задача 3.

 

Короткий импульс света с энергией E=7.5 Дж, в виду узкого, почти параллельного пучка падает на зеркальную пластинку с коэффициентом отражения p=0.60. Угол падения  Определить с помощью корпускулярных представлений импульс, переданный пластинке.

 

Дано: СИ Решение:
Дж

Пусть N-число фотонов в импульсе света с полной энергией E. Полный импульс налетающих фотонов равен . Где n-единичный вектор в направлении движения налетающих фотонов. От зеркальной пластинки C с коэффициентом отражения p отразится фотонов. Их общий импульс определяется выражением , где -единичный вектор в направлении движения отраженных фотонов. Импульс, переданный пластине, равен .

Модуль импульса, переданного пластине, равен , где -угол между векторами n и .

.

Подставляя в это выражение численные значения величин, находим .

Ответ: =

Найти: =? нН*с

 


Задача 4.

 

Частица движется слева направо в одномерном потенциальном поле, показанном на рисунке. Левее барьера, высота которого U=15эВ, кинетическая энергия частицы T=20эВ. Во сколько раз и как изменится дебройлевская длина волны частицы при переходе через барьер?

 

Дано: СИ Решение:
эВ эВ

 Поскольку кинетическая энергия частицы по условию задачи мала по сравнению с энергией покоя, то в данном случае можно воспользоваться формулами нерелятивистской механики. Из закона сохранения энергии:

, следует, что модуль импульса частицы как функция ее координаты x, определяется выражением:

.

Получаем выражение для дебройлевской длины волны частицы в различных областях пространства:

.

В области, где :

.

Справа от барьера, где потенциал имеет заданное значение ,длина волны равна:

.

Таким образом, при прохождении барьера длина волны частицы возрастает в , следовательно, .

Ответ: длина волны возрастет в  раза.

Найти: =? м/м

Задача 5.

 

Частица массой m находится в одномерной потенциальной яме в основном состоянии. Найти энергию основного состояния, если на краях ямы ψ – функция вдвое меньше, чем в середине ямы.

 

Дано: СИ Решение:
m кг

В области , в которой потенциал равен нулю: , где .

Решение этого уравнения можно записать в виде:

, где A и B – некоторые константы. Поскольку по условию задачи , причем , приходим к выводу, что . Учитывая требование , получаем уравнение .

Решение этого уравнения, соответствующее минимальному значению энергии, имеет вид:

.

В результате, для энергии частицы в основном состоянии получаем выражение:

Ответ:

Найти: =? Дж

 


Задача 6.

 

Излучение Солнца по своему спектральному составу близко к излучению абсолютно черного тела, для которого максимум испускательной способности приходится на длину волны 0.48 мкм. Найти массу, теряемую Солнцем ежесекундно за счет этого излучения. Оценить время, за которое масса Солнца уменьшится на 1%.

 

Дано: СИ Решение:
 

С помощью закона смещения Вина найдем температуру поверхности Солнца:

, где b-постоянная Вина.

Энергия, теряемая Солнцем в виде излучения в единицу времени P, определяется произведением его энергетической светимости M на площадь излучающей поверхности:

, где R-радиус Солнца, используя закон Стефана-Больцмана для вычисления светимости M и формулу , находим:

, где  - постоянная Стефана-Больцмана.

Согласно теории относительности Эйнштейна, энергия покоя тела (в данном случае – Солнца)связана с его массой m соотношением:

, где c – скорость света. Поэтому, скорость уменьшения массы Солнца за счет его излучения определяется равенством:

.

Таким образом, время , в течение которого происходит относительное уменьшение массы Солнца , приближенно равно:

.

Ответ: ;

Найти: =? =?  

 


Задача 7.

 

Точечный изотропный источник испускает свет с λ=589нм. Световая мощность источника P=10Вт. Найти: а) среднюю плотность потока фотонов на расстоянии r=2.0 метра от источника;

б) расстояние от источника до точки, где средняя концентрация фотонов

 

Дано: СИ Решение:

Найдем число фотонов, испускаемых источником в единицу времени .

.

Окружим точечный источник сферической поверхностью радиуса r. Очевидно, что число фотонов, пролетающих через эту поверхность в единицу времени, равно . Поэтому, из определения плотности фотонов и формулы , находим:

.

Расстояние r, на котором имеется заданная концентрация фотонов, определяется выражением:

.

Ответ: =

=9м

   

 


Задача 8.

 

Имеется два абсолютно черных источника теплового излучения. Температура одного из них  Найти температуру другого источника, если длина его волны, отвечающая максимуму его испускательной способности, на  больше длины волны, соответствующей максимуму испускательной способности первого источника.

 

Дано: СИ Решение:
 

Длина волны, на которую приходится максимум излучения первого источника, согласно закону смещения Вина, вычисляется по формуле:

.

По условию задачи максимум испускательной способности второго источника приходится на длину волны: .

Вновь применяя закон смещения Вина, и используя выражение ,находим:

Ответ:

Найти: =?  

Задача 9.

 

Найти длину волны коротковолновой границы сплошного рентгеновского спектра, если скорость электронов, подлетающих к антикатоду трубки, ν=0.85с, где c – скорость света.

 

Дано: СИ Решение:
 

Коротковолновая граница сплошного рентгеновского спектра  вычисляется по формуле:

, с учетом условия, что вся кинетическая энергия электрона T, подлетающего к антикатоду трубки, трансформируется в энергию излучения, т.е. =T, и, следовательно:

.

Поскольку, по условию задачи скорость электронов не мала по сравнению со скоростью света:

, где .

Ответ: =2.8 пм;

Найти: =?  

Задача 10.

 

При поочередном освещении поверхности некоторого металла светом с длинами волн λ1= 0.35мкм и λ2=0.54мкм, обнаружили, что соответствующие максимальные скорости фотоэлектронов отличаются друг от друга в η=2.0 раза. Найти работу выхода с поверхности этого металла.

 

Дано: СИ Решение:
 

, где m-масса электрона,

- длина волны падающего излучения. Вычисляя отношение максимальных скоростей электронов, соответствующих длинам волн  и :

, получаем уравнение:

, из которого находим:

.

Ответ: =1.9эВ

Найти: =?

Тест

 

1.Тело, относительно которого рассматривают движение, называют:

1) системой координат;

2) телом отсчета;

3) системой отсчета;



2020-02-03 192 Обсуждений (0)
Опасности, которыми не следует пренебрегать 0.00 из 5.00 0 оценок









Обсуждение в статье: Опасности, которыми не следует пренебрегать

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (192)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.018 сек.)