Мегаобучалка Главная | О нас | Обратная связь


Движение микрочастицы в области одномерного потенциального порога



2020-02-03 271 Обсуждений (0)
Движение микрочастицы в области одномерного потенциального порога 0.00 из 5.00 0 оценок




Билет 3

Спонтанное и индуцированное излучение. Коэффициенты «А» и «В» Эйнштейна.

Спонтанный переход – переход атомов с более высоких на более низкие энергетические уровни. Такие переходы приводят к спонтанному испусканию атомами фотонов. Индуцированные переходы – переходы с более низких на более высокие уровни энергии под действием излучения. Для возможности установления равновесия при произвольной интенсивности падающего излучения необходимо существование «испускательных переходов», вероятность ктр. возрастала бы с увеличением интенсивности излучения, т.е. «испуск. переходов», вызываемых излучением. Возникающее при таких переходах излучение назыв. вынужденным или индуцированным.

Вынужденное и вынуждающее излучения являются строго когерентными. Пусть - вероятность вынужденного перехода атома в ед. времени с энергетического уровня на уровень , -вер-ть обратного перехода. При одинаковой интенсивности излучения . и - вероятность вынужденных переходов пропорциональна плотности энергии вынуждающего переход магнитного поля, приходящейся на частоту , соответствующую данному переходу ( ). Величины  назыв. коэф. Эйнштейна. Равновесие между веществом и излучением будет достигнуто при условии, что число атомов , совершающих в ед. времени переход из состояния n в сост. m, будет равно числу атомов , совершающих переход в обр. направ. Пусть , тогда переходы смогут происх. только под воздействием излучения, переходы будут совершаться как вынужденно, так и cпонтан., ,

Усл. равновесия: имеем  ,

( -числа атомов в сост. m и n). Вероятность спонтанного перехода атома в ед. времени из сост. n в сост m через . Тогда число атомов совершающих в ед. вр. спонтанный переход , опр.  т.е.

. определяем равновесное значение (1), Согласно з-ну Больцмана  При малых частотах сравнивая с формулой Рэлея-Джинса  находим, что  подставляя в (1) получаем формулу Планка.

Движение микрочастицы в области одномерного потенциального порога

Одномерный потенциальный порог.

и ;Решения ур-ий Шредингера для стац. сост. имеет вид

 и  где  и

волновые ф-ии частицы в обл-тях I и II соотв.  и , Вер-ть того что частица отразится от порога опр-ся коэф. отражения , Вероятность прохождения частицы ===============================

Потенциальный барьер. Пусть ч-ца движущаяся слева направо, встречает на своем пути потенц. барьер высоты .Рассм. случай  тогда (1) для обл. I и III

(2) для обл-ти II причем . Будем искать реш. ур-я (1) в виде  подставляя получаем  отсюда , где , т.о. реш. ур-я (1) имеет вид для обл-ти I, для обл-ти III, аналогично для ур-я (2) для обл. II, . Заметим,что реш. вида  соотв. волне распростр. в положит. направлении оси х, а реш. вида  - в противополож.

В обл. III имеется только волна, прошедшая через барьер и распр. слева направо следов. =0. Для того чтобы  была непрерывна должно вып. усл. и . Для того чтобы  не имела изломов необх.: и , причем  - отношение квадратов модулей амплитуд отраженной и падающих волн определяет вер-ть отражения частицы от потенц. барьера – коэф. отражения.  - отнош. квадратов модулей амплитуд прошедшей и падающей волн – вер-ть прохождения частицы через барьер – коэф. прохождения. . Из ур-ний получившихся из условий непрерывности и гладкости пси-ф-ии, находим

, т.е. вер-ть прохождения частицы через потенц. барьер сильно зависит от ширины барьера l и от его превышения над . В случае барьера произв. формы

. При преодолении потенц. барьера ч-ца как бы проходит через туннель в этом барьере – рассм. нами явление – туннельный эффект.

Билет 6 1. Волновая ф-ция, ее статический смысл и условие, которым она должна удовлетворять. Принцип суперпозиции в квантовой механике. С движением частицы связывается волновой процесс, описываемый волновой ф-цией y ( ` r , t )= = y ( x , y , z , t ). y ( ` r , t )= y ( ` r ) j ( t ). dp =| y |2 dV =| y ( ` r , t )|2 dxdydz – вероятность того, что частица находится в объеме dV , определяемая радиусом ` r . Таким образом волновая ф-ция не имеет смысла, а квадрат модуля дает плотность вероятности нахождения частицы в пр-ве. Поскольку ф-ция не имеет смысла, то она может быть комплексной: ò | y |2 dV =1 (от - ¥ до ¥ ) – условие нормировки. y - нормированная, если удовлетворяется условие: | ei a |2= ei a , e - i a =1. Требования к волновой ф-ции. w =| y |2= yy * , ò | y |2 dV =1. 1) Ф-ция должна быть квадратично интегрируема или конечна. 2) ф-ция должна быть однозначна. 3) непрерывность ф-ции вместе с первыми производными. Принцип суперпозиции. d w =| y |2 dV , y = c 1 y 1 + c 2 y 2 . Если частица может находится в состоянии, описываемом волновой ф-цией y 1 и y 2 , то она может находится и в состоянии y , являющейся линейной комбинацией этих состояний. y = c 1 y 1 + c 2 y 21 и с2 могут быть комплексными), | c 1 |2 и | c 2 |2 дают вероятность того, что частица находится в состоянии 1 или в состоянии 2. 2.Эффект Комптона. Эффектом Комптона наз.упругое рассеяние коротковолнового электромагнитного излучения на свободных электронах вещества, сопровождающееся увеличением длины волны. Комптон экспериментально доказал Δλ=λ`-λ=2λ c sin 2 ( θ /2)( λ`-длина волны рассеянного излучения, λ-длина волны падающего света, λс- комптоновская длина волны( при рассеянии фотона на электроне λс=2,426 пм). Эффект Комптона не может наблюдаться в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешний электрон нельзя считать свободным. Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например на протонах, однако из-за большой массы протона его отдача просматривается лишь при рассеянии фотонов с очень высокой энергией. ------------------------------------------------------ Билет 7 2. Принцип работы лазера. Особенности лазерного излучения. Основные типы лазеров, их применение .  Лазер – устройство, при прохождении через которое электромагнитные волны усиливаются за счет вынужденного излучения. Лазер – оптический квантовый генератор. Лазер имеет 3 основных компонента: 1) активная среда, 2) система накачки, 3) оптический резонатор. 1-й лазер был рубиновый, активная среда – рубин Al 2 O 3 . Для оптической накачки использовалась газоразрядная лампа. В кристалле Al 2 O 3 некоторые атомы Al замещены на Cr 3+ . При облучении рубина цветом атом хрома переходит с уровня 1 на уровень 3, затем происходят переходы либо 3 ® 1 (незначительно), либо 3 ® 2. Переход 2 ® 1 запрещен, поэтому атомы хрома накапливаются на уровне 2, возникает среда с инверсной населенностью. Фотон случайно родившийся при спонтанных переходах может порождать в активной среде множество вынужденных переходов 2 ® 1, в результате возникает целая лавина вторичных фотонов, зарождается лазерная генерация. Для выделения направления лазерной генерации используется оптический резонатор. В простейшем случае – пара обращенных друг к другу зеркал на общей оптической оси, между которыми помещается активная среда. Фотоны, которые движутся под углом к оси кристалла выходят из активной среды, а фотоны, которые движутся параллельно оси вызывают вынужденное излучение. Многократно усиленный поток выходит через полупрозрачное зеркало, создавая пучок огромной яркости. Типы лазеров: 1) твердотельные, 2) газовые (гелий-неоновые), 3) полупроводниковые, 4) жидкостные. Применение: обработка, резание, скоростное и точное обнаружение дефектов, в измерительной технике, голография. 2.Деление ядер и цепные реакции. Термоядерный синтез. Реакция деления ядра заключается в том, что тяжелое ядро под действием нейтронов, а как впоследствии оказалось и других частиц делится на несколько более легких ядер (осколков), чаще всего на ядра, близких по массе. Оно сопровождается испусканием 2-3 вторичных нейтронов, называемых нейтронами деления. Т.к. для средних ядер число нейтронов примерно равно числу протонов, а для тяжелых ядер число нейтронов значительно превышает число протонов, то образовавшиеся осколки деления перегружены нейтронами, в результате чего они и выделяют нейтроны деления. Однако испускание нейтронов деления не устраняет полностью перегрузку ядер-осколков нейтронами. Это приводит к тому, что осколки оказываются радиоактивными. Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществления цепной реакции деления - ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция характеризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необходимым условием для развития цепной реакции деления является требование k ≥1. Коэф.размножения зависит от природы делящегося вещества, а для данного изотопа – от его количества, а также размеров и формы активной зоны(пространство, где происходит цепная реакция). Минимальные размеры активной зоны, при которых возможно осуществление цепной реакции, называются критическими размерами. Минимальная масса делящегося вещества, находящегося в системе критических размеров, необходимая для осуществления цепной реакции, называется критической массой. N = N 0 e ( k -1) t / T – число нейтронов в момент времени t , N 0 - число нейтронов в начальный моменты. k >1 – саморазвивающиеся реакции, k =1 – самоподдерживающаяся реакция, k <1 – затухающая реакция. Реакция синтеза атомных ядер – образование из легких ядер более тяжелых. Реакция синтеза проходящая при сверхвысоких температурах (примерно 107 К и выше) называется термоядерной реакцией. Билет 8. 1.Работа выхода электронов из металла. Термоэлектронная эмиссия. Формула Ричардсона и Ричардсона-Дешмана.  Работа выхода – это работа, которую нужно совершить для удаления электрона с уровня Ферми. Авых= D U - EF , D U зависит от материала, | D U |= A + E кин , А=| D U |- E кин , Е F – зависит от концентрации свободных электронов Þ A вых слабо зависит от температуры. Термоэлектронная эмиссия – испускание электронов сильно нагретой поверхностью. Термоэлектронную эмиссию характеризует величина тока насыщения. 1) U - заворачивает электрон, но некоторые электроны, кинетическая энергия которых велика прорываются, I >0. 2) Если U возрастает, то I возрастает, так как содействует росту тока. 3) Линейный участок, I ~ U , связана с облаком отрицательного заряда около катода. Оно мешает электрону выскакивать из катода. Рост U ведет к уменьшению плотности этого облака Þ росту I . 4) Насыщение – все кто выскочил из катода, все увлекаются к аноду. Формула Ричардсона-Дешмана. j нас = A ( kT )2 exp (- A вых / kT ) идея: m u x 2 /2> D U . j нас повышается при повышении температуры и понижении работы выхода. 2. Структура атомного ядра. Характеристика ядер: заряд, размеры, масса, энергия связи. Свойства и обменные характер ядерных сил. Атомное ядро состоит из элементарных частиц – протонов и нейтронов. Протон имеет положительный заряд, равный заряду электрона. Нейтрон – нейтральная частица. Протоны и нейтроны называют нуклонами. Общее число нуклонов в атомном ядре называется массовым числом А. Атомное ядро характеризуется зарядом Ze , где Z -зарядное число ядра, равное числу протонов в ядре и совпадающее с номером в периодической системе Менделеева. Ядра с одинаковым Z , но с разным А называются изотопами, а ядра с одинаковыми А, но с разными Z - изобарами. Радиус ядра задается эмпирической формулой R = R 0 A 1/3 , где R 0 =(1,3÷1,7)10-15 м. Энергия, которую необходимо затратить на расщепление ядра на отдельные нуклоны, называется энергией связи нуклонов в ядре: E св =[ Zmp +( A - Z ) mn - m я ] c 2 , где mp , mn , m я - соответственно массы протона, нейтрона и ядра. Энергия связи ядра E св =[ Zm Н +( A - Z ) mn - m ] c 2 , где mH - масса атома водорода. Δm =[ Zmp +( A - Z ) mn - m я ]-дефект массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них атомного ядра. Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами. Свойства: 1.ядерные силы являются силами притяжения 2.ядерные силы являются короткодействующими – их действие проявляется только на расстоянии 10-15 м. При увеличении расстояния между нуклонами ядерные силы быстро уменьшаются до нуля а при расстоянии, меньших их радиуса действия, оказываются примерно в 100 раз больше кулоновских 3.ядерным силам свойственна зарядовая независимость: ядерные силы, действующие между 2 протонами или 2 нейтронами, одинаковы по величине. Ядер.силы имеют неэлектрическую природу. 4.ядерным силам свойственно насыщение – каждый нуклон в ядре взаимодействует с ограниченным числом ближайших к нему нуклонов. 5.ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. 6.ядерные силы не являются центральными, т.е. действующими по линии, соединяющей центры взаимодействия нуклонов. Билет 12 1.Прохождение частицы через потенциальный барьер. Туннельный эффект. Рассмотрим простейший потенциальный барьер прямоугольной формы. Для одномерного (по оси х) движения частицы. ì ∞, x <0 (для области 1) U ( x )= í 0,0≤ x ≤ l (для области 2)     î 0, x >1 (для области 3) где l -ширина ямы, а энергия отсчитывается от ее дна, U -высота. Частица, обладая энергией Е, либо беспрепятственно пройдет над барьером( при Е> U ), либо отразится от него (при Е< U ) и будет двигаться в обратную сторону. Для микрочастица, даже при Е> U , имеется вероятность отражения от барьера, и при Е<U есть вероятность проникновения через барьер. Это слудет из решения ур-ния Шредингера, описывающего движение микрочастицы               для областей 1 и 3 k 2 =2 mE / h 2 ; для области 2 q 2 =2 m ( E - U )/ h 2 Общие решения этих диф.уравнений: Ψ 1 ( x )= A 1 eikx + B 1 e - ikx (для области 1); Ψ 2 ( x )= A 2 eiqx + B 2 e - iqx (для области2) Ψ 3 ( x )= A 3 eikx + B 3 e - ikx (для области 3). В частности, для области 1 полная волновая, будет иметь вид ψ1( x , t )= ψ 1 ( x ) e -( i / h ) Et = A 1 e -( i / h )( Et - px ) + B 1 x -( i / h )( Et + px ) ( в этом выражении первый член представляет собой плоскую волну вдоль х, другой – волну, распространяющаяся в обратную сторону). В области 3 есть только прошедшая сквозь барьер волна и поэтому В3=0.Для области 2 q = iβ ; β =√2 m ( E - U ) / h . Получили Ψ 1 ( x )= A 1 eikx + B 1 e - ikx , Ψ 2 ( x )= A 2 e - βx + B 2 eβx , Ψ 3 ( x )= A 3 eikx Качественный характер функций ψ1(х),ψ2(х),ψ3(х)(см.рис2), откуда следует, что волновая функция не равна нулю и внутри барьера, а в области3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т.е. с той же частотой, но с меньшей амплитудой. Т.о. приходим к явлению – туннельный эффект, когда микрочастица может пройти сквозь потенциальный барьер. 2. Атом во внешнем магнитном поле. Эффект Зеемана. Эффект Зеемана – расщепление энергетических уровней при действии на атомы магнитного поля. Атом обладающий магнитным моментом, приобретает в магнитном поле дополнительную энергию где - проекция полного магнитного момента атома на направление поля В . Запишем выражение для энергии каждого подуровня: , где -энергия уровня в отсутствие магн. поля. Отсюда следует, что ур-ни с кв. числом расщепляются в магн. поле на равноотстоящих др. от др. подуровней, причем величина расщепления зависит от множителя Ланде , т.е. интервалы между соседними подуровнями пропорциональны . Возможны только такие переходы между подуровнями, принадлежащими разным уровням, при ктр. вып-ся правила отбора . Компоненты, соотв. назыв. -компонентами, а компонентами. При наблюдении перпендикулярно магн. полю присутствуют и и компоненты. При набл. вдоль – только .Частоты зеемановских компонент спектральной линии с частотой  опр. ф-лой , - зеемановское смещение(отн. несмещ. линии) Простой эффект Зеемана Эффект в ктр. спектральная линия расщепляется на три компоненты. Простой эф. присущ спектральным линиям, не имеющим тонкой структуры. Эти линии возникают при переходах между синглетными ур-нями ( ) , т.е. (1). Слева (рис.) расщепление ур-ней для перехода  (При включении поля возникают три зеемановские компоненты в соотв с (1)) На рис. справа но и здесь тоже только три зеемановские компоненты (в соотв. с правилом отбора) Сложный эффект Зеемана. Когда спектральная линия распадается на число более трех. Это связано с зав-тью расщепления самих ур-ней от множителя Ланде P.S. Обозначение уровней  где =2s+1, s- спин, L –символ состояния , -квантовое число полного мом
Билет 10 1.Опыты по рассеянию a-частиц. Ядерная модель атома. Постулаты Бора. α-частицы возникают при радиоактивных превращениях; они являются положительно заряженными частицами с зарядом 2е и массой во много раз больше массы электрона. Пучки α-частиц обладают высокой монохроматичностью. Резерфорд, исследуя прохождение α-частиц в веществе(через золотую фольгу толщиной 1 мкм), показал, что основная их часть испытывает незначительные отклонения, но некоторые α-частицы резко отклоняются от первоначального направления(даже до 180˚). Т.к. электроны не могут существенно изменить движение столь тяжелых и быстрых частиц, как α-частицы, то Резерфорд сделал вывод что значительное отклонение α-частиц обусловлено из взаимодействием с положительным зарядом большой массы. Однако значительное отклонение испытывают лишь немногие α-частицы; следовательно, лишь некоторые из них проходят вблизи данного положительного заряда. Это означает что положительный заряд атома сосредоточен в объеме, очень малом по сравнению с объемом атома. На основании своих исследований Резерфорд в 1991г. предположил ядерную (планетарную) модель атома. Вокруг положительного ядра, имеющего заряд Ze ( Z - порядковый номер элемента, е-элементарный заряд), размер 10-15-10-14 м и массу, практически равной массе атома, в области с линейными размерами порядка 10-10м по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Первый постулат Бора (постулат для стационарных состояний): в атоме существуют стационарные состояния( не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов сопровождается излучением электромагнитных волн. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантовые значения момента импульса, удовлетворяющие условию mevrn =ħ n ( n =1,2,3…) где me -масса электрона, v -его скорость по n -орбите радиуса rn ,ħ= h /(2 π ) Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией hv = En - Em равной разности энергий соответствующих стационарных состояний ( En и Em – соответственно энергии стационарных состояний атома до и после излучения(поглощения). При Em < En происходит излучение фотона, при Em > En - его поглощение. 2. Примесная проводимость полупроводников. Концентрация основных и неосновных носителей в полупроводнике p-типа. Уровень Ферми примесного полупроводника p-типа. Температурная зависимость проводимости примесного полупроводника p-типа. Примесная проводимость полупроводников. Примесная проводимость полупроводников возникает, если некоторые атомы данного полупроводника заменить в узлах кристаллической решетки атомами, валентность которых отличается на единицу от валентности основных атомов. Концентрация основных и неосновных носителей в полупроводниках p-типа. В полупроводнике с примесью, валентность которой на единицу меньше валентности основных атомов, имеется только один вид носителей тока – дырки. Такой полупроводник обладает дырочной проводимостью и является полупроводником p-типа. Атомы примеси, вызывающие появление дырок, называют акцепторами. Акцепторные уровни оказывают существенное влияние на электрические св-ва кристалла, если они расположены недалеко от потолка валентной зоны. Образованию дырки отвечает переход э-на из валентной зоны на акцепторный уровень. Обратный переход соответствует разрыву одной из четырех ковал. связей атома примесей с его соседями и рекомбинации образовавшегося при этом электрона и дырки Уровень Ферми примесного полупроводника p-типа. Уровень Ферми располагается в нижней половине запрещенной зоны. При повышении температуры уровень Ферми( ) в полупроводниках обоих типов смещается к середине запрещенной зоны. Температурная зависимость проводимости примесного полупроводника p-типа. При повышении температуры концентрация примесных носителей тока быстро достигает вершины. Это значит, что практически освобождаются все донорные или заполняются электронами все акцепторные уровни. По мере роста температуры все больше сказывается собственная проводимость полупроводника, обусловленная переходом электронов из валентной зоны в зону проводимости. → при высоких температурах проводимость полупроводника складывается из примесной и собственной проводимостей. При низких температурах преобладает примесная, а при высоких – собственная проводимость. Билет 11. 1.Тепловое излучение. Интегральные и спектральные характеристики излучения. Закон Кирхгофа. Закон Стефана-Больцмана. Закон смещения Вина. Тепловое излучение – вид излучения, который может находится в термодинамическом равновесии с излучателем и к анализу такого излучения применимы законы термодинамики. Спектральная плотность энергетической светимости тела – мощность излучения с единицы площади поверхности тела а интервале частот единичной ширины: dWν , ν + изл - энергия электромагнитного излучения, испускаемого за единицу времени(мощность излучения) с единицы площади поверхности в интервале частот от ν до ν+ d ν(Дж/м2). Интегральная энергетическая светимость можно найти, просуммировав по всем частотам: RT =∫0 Rν , T dν . Закон Кирхгофа – отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры Rν , T / Aν , T = rν , T . Закон Стефана-Больцмана Re = σT 4 , т.е. энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры, σ-постоянная Стефана-Больцмана = 5,67·108 Вт/(м2·К4). Закон смещения Вина λмах= b / T , т.е. длина волны λмах, соответствующая максимальному значению спектральной плотности энергетической светимости черного тела, обратно пропорционально его термодинамической температуре, b - постоянная Вина =2,9·10-3 м·К. Закон Вина обьясняет, почему при понижении температуры нагретых тел в их спектре сильнее преобладает длинноволновое излучение. ==================================================== Билет 12 (2. Статистика Ферми-Дирака. Функция распределения Ф-Д. Вырожденный электронный газ. Энергия Ферми.  Частицы с полуцелым спином называются фермионами. Системы фермионов описываются квантовой статистикой Ф-Д. Фермионы подчиняются правилу Паули: в данном квантовом состоянии системы фермионов не может находиться более 1-й частицы. Ф-ции распределения Ф-Д называются средняя «заселенность» фермионами состояний с данной энергией: f Ф = D N ( Wi )/ D gi , где D N ( Wi ) – число частиц с энергией в интервале от Wi до Wi + D Wi , D gi – число квантовых состояний в этом интервале энергии. Решение задачи о наиболее вероятном распределении фермионов: f Ф=1/( exp [( Wi - m )/ kT ]+1) m =( U - TS + PV )/ N – химический потенциал, работа при увеличении числа частиц в системе на 1, U – внутреняя энергия системы, S – энтропия, V – объем, p – давление. Энергия Ферми – максимальная энергия у электрона находящегося на уровне Ферми при T =0К. Вырожденный электронный газ: система частиц называется вырожденной, если её св-ва, описываемые квантовыми закономерностями, отличаются от св-в обычных систем, подчиняющихся классическим законам. Параметром вырождения А называется величина: А= exp ( m / kT ), где m - химический эквивалент. Параметр вырождения показывает классический или квантовый случай газа: EF / kT >1 – квантовая, <<1 – классическая. )) 2.Предельный переход квантовых статических распределений Ферми-Дирака и Бозе-Эйнштейна в классическое распределение Максвелла-Больцмана.  Параметр вырождения. 1) Распределение Ф-Д: f Ф =1/( exp [ E - EF / kT ]+1). 2) распределение Б-Э: f Б =1/( exp [ E - EF / kT ]-1). 3) Распределение М-Б: f = exp [- E / kT ].  Функции распределения в классической и квантовых статиках, введенные как среднее число частиц в одном состоянии, могут быть выражены единой формулой: f =1/( exp [ E - EF / kT ]+ d ). Для Ф-Д: d =1, для Б-Э: d =-1, для М-Б: d =0 EF =0. K – постоянная Больцмана, T – абсолютная температура, EF – энергия Ферми, max E у ` e ферми-газа при T =0К. Параметр вырождения: A = exp ( m / kT ). При А<<1 распределение Б-Э и Ф-Д переходят в классическое распределение М-Б.
Билет 13 1. Частица в трехмерном потенциальном ящике. Энергетический спектр частицы. Понятие о вырождении энергетических уровней. Найдем собств. зн-я энергии и соотв. им собств. ф-ии для частицы находящейся в одномерной потенциальной яме с беск. выс. стенками. Пусть движение ограничено непроницаемыми для частицы стенками x=0 и x=l . U=0 при , U=∞ при , Ур-е Шредингера , т.к. за пределы ямы частица вырваться не может, то . В области где , ур-е имеет вид , вводим , придем к , реш. имеет вид , т.к. , то , откуда =0 , тогда , т.е.  ( ), откуда , спектр энергии – дискретный. Подставив зн-е k получим , для нахождения воспользуемся условием нормировки , откуда , т.е.  Ч-ца в 3-мер ящ. , , ; ,  Причем  при  будет , а при или или Когда одной энергии соотв. несколько равных сост. называется вырождением, а число этих сост. – кратностью вырождения 2. Симметрия и законы сохранения в мире элементарных частиц. Симметрия и законы сохранения в мире элементарных частиц. Симметрия. Каждой частице соответствует античастица. е+ и р- отличаются от е- и р+ знаком электрического заряда. n от ň знаком магнитного момента. е+ + е- = γ + γ. Законы сохранения

2020-02-03 271 Обсуждений (0)
Движение микрочастицы в области одномерного потенциального порога 0.00 из 5.00 0 оценок









Обсуждение в статье: Движение микрочастицы в области одномерного потенциального порога

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (271)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)