Мегаобучалка Главная | О нас | Обратная связь


Классификация методов измерения толщины      холоднокатаных полос и обоснование выбора наиболее подходящего из них



2020-02-03 186 Обсуждений (0)
Классификация методов измерения толщины      холоднокатаных полос и обоснование выбора наиболее подходящего из них 0.00 из 5.00 0 оценок




Кафедра обработки металлов давлением

 

 

Курсовая работа

 

по дисциплине «Методы и средства измерений,

 испытаний и контроля»

 

на тему «Толщина холоднокатаных полос и методы ее измерения»

 

 

Выполнил студент

заочного факультета

группа              5 курс,

шифр:  

 

 

Проверил преподаватель:

 

                                                                                         

 

Магнитогорск

2005


Содержание

 

Введение                                                                                                      3

1  Классификация методов измерений толщины холоднокатаных полос

и обоснование выбора наиболее подходящего из них                                       4

Физические основы выбранного метода измерения                        9

3  Устройство, работа и характеристика измерителя (датчика)              11

3.1   Назначение и технические данные толщиномера ТРХ-7195      11

3.2   Блок-схема рентгеновского толщиномера ТРХ-7195                 14

3.3   Устройство и работа толщиномера ТРХ-7195                            15

Заключение                                                                                                       17

Список литературы                                                                                18


Введение

 

Одной из величин, подлежащих обязательному измерению при автоматизации прокатного производства, являются показатели геометрии проката.

Измерение геометрических размеров проката производят для контроля размеров и учета количества проката для выявления нарушений технологического режима (с целью ручной или автоматической настройки прокатных станов), перед сдачей готовой продукции на склад, для использования автоматизированных систем отделки проката.

Создание высокопроизводительных прокатных станов со скоростью прокатки 25-30 м/сек и выше, а также повышение требований к качеству продукции обусловили создание автоматических непрерывно действующих приборов для бесконтактного измерения геометрических размеров металла по всей длине в процессе прокатки. К точности и надежности таких приборов предъявляются жесткие требования, выполнение которых существенно осложняется характерными для прокатного производства тяжелыми условиями эксплуатации приборов: непрерывный режим работы, возможность значительных перегрузок, воздействие вибраций и ударов, влияние сильных электрических и магнитных полей, резкие изменения температуры окружающей среды, присутствие в окружающей среде воды, масла и их паров, а также пыли и окалины.

 

Классификация методов измерения толщины      холоднокатаных полос и обоснование выбора наиболее подходящего из них

Толщина полосы и листов является одним из важнейших показателей, по которому можно судить о результатах работы цеха и о качестве выпускаемойпродукции.

В цехах холодной прокатки контроль толщины проводится на трех основных этапах, что и определяет выделение трех основных областей применения измерителей толщины полосы:

1  На агрегатах в начале технологического потока (до прокатного стана). Основным назначением измерителей толщины в этом случае является контроль качества подката, что в случае необходимости дает возможность вырезать утолщенные концы полосы, а при выдаче готовой продукции без обработки ее на прокатном стане (например, горячекатаной травленой полосы) позволяет судить о толщине полосы, отгружаемой заказчику. Снабжение рулона полосы профилеграммой может дать возможность программирования его дальнейшей обработки.

2  На прокатном стане. С помощью измерителя толщины полосы осуществляется измерение и регулирование толщины с целью получения продукции заданного размера.

3  На агрегатах и станах в конце технологического потока. В этом случае основная функция прибора – определить соответствие готовой продукции заданным размерам по толщине и, в случае необходимости, дать команде на отбраковку некондиционных листов или участков полосы

В условиях конкретного технологического процесса наиболее целесообразным является применение измерителя толщины, в основе которого лежит определенный наиболее эффективный в данном случае метод. Выбор такого метода - это один из важнейших этапов, необходимый для обеспечения точности, достоверности и осуществимости измерения данного параметра в существующих условиях.

Толщину проката в прокатном производстве измеряют двумя методами: прямым и косвенным.

При прямом методе измерения толщина изделия (или отклонение толщины от заданной) с помощью датчиков непосредственно преобразуется в электрическую величину, по которой и судят о толщине проката.

При косвенном методе измерения о толщине проката судят по тем параметрам процесса прокатки, которые связаны функциональной зависимостью с толщиной прокатываемого металла. Наиболее просто толщину прокатываемых листов таким методом можно определить по давлению металла на валки.

 

Приборы, основанные на прямом методе измерения, можно разделить на контактные и бесконтактные:

В приборах контактного типа измерения производят при соприкосновении измерительных элементов (или преобразователей) с поверхностью проката. При этом объект контроля может перемещаться или быть неподвижным относительно измерительных элементов.

Приборы контактного типа имеют следующие недостатки:

1) не обеспечивают достаточной точности при большой скорости прокатки (>10 м/сек);

2) толщина измеряется только в одном месте (обычно с края листа);

3) при длительной работе наблюдается большой износ ролика, в связи с чем требуются частые поверки;

4) не исключена возможность порчи поверхности проката;

5) не учитывается тепловая деформация роликов.

В последнее время для измерения толщины прокатываемых изделий широкое применение нашли бесконтактные приборы, в которых измерение производится без соприкосновения измерительных элементов с поверхностью изделия, кроме того, они не имеют перечисленных выше недостатков, которыми обладают приборы, использующие контактные измерения.

Бесконтактные толщиномеры по принципу действия можно разделить на следующие группы:

1  приборы, основанные на измерении степени поглощения электромагнитного излучения или потока b-частиц;

2  электромагнитные;

3  пневматические;

4 ультразвуковые.

Рассмотрим принцип действия данных групп бесконтактных толщиномеров.

1  В приборах, основанных на измерении степени поглощения электромагнитного излучения, используется два вида электромагнитного излучения: рентгеновские и g-лучи.

Рентгеновские лучи возникают в результате торможения электронов, g-лучи являются результатом ядерных превращений, но и те и другие возникают при переходе ядра из возбужденного энергетического состояния в более низкое энергетическое состояние.

Длина волны рентгеновских лучей находится в диапазоне 0,01-5 °А, g-лучей – в диапазоне 0,005-0,01°А. Этот диапазон считают условным, так как современная техника сверхвысоких напряжений позволяет получать рентгеновские лучи большей "жесткости".

Рентгеновские и g-лучи занимают наиболее коротковолновый участок шкалы электромагнитных волн. Они невидимы для глаза человека и обладают способностью проходить сквозь непрозрачные для видимого света предметы.

Рентгеновские и g-лучи, подобно световым, вызывают свечение (люминесценцию) некоторых веществ, в связи с чем при просвечивании рентгеновскими и g-лучами используют флуоресцирующие экраны; эти лучи могут вызвать ионизацию воздуха и газов, делая их электропроводными, что дает возможность их обнаружить и измерять их интенсивность.

При похождении рентгеновских и g-лучей через вещество их интенсивность постепенно уменьшается асимптотически приближаясь к нулю:

I = I 0 e - m h

гдеI и I0 – начальная интенсивность излучения и интенсивность излучения после прохождения слоя поглощающей среды толщиной h см;

m - линейный коэффициент ослабления излучения в данной среде, который зависит от энергии излучения, атомного номера и плотности среды.

В качестве источников рентгеновского излучения применяются рентгеновские трубки и бетатроны, а в качестве источников g-излучения – в основном искусственные радиоактивные изотопы.

Действие приемников излучения основано на различных видах взаимодействия с веществом. В большинстве приемников излучения используется ионизация, создаваемая в них при прохождении заряженных частиц. Сюда относятся ионизационные камеры, газоразрядные счетчики и сцинтилляционные счетчики.

2    Принцип действия электромагнитных измерителей толщины листов и покрытий основан на прямом или косвенном измерении магнитного потока, изменяющегося с изменением толщины листа или покрытия. Для измерения толщины листов и покрытий применяют три основных электромагнитных метода.

Первый метод основан на измерении силы притяжения постоянного магнита или электромагнита к исследуемому объекту. Эта сила определяется при отрыве магнита от объекта. Данный метод получил название магнитного отрывного метода, а приборы, использующие его, называют отрывными толщиномерами. Этот метод применим только для измерения толщины ферромагнитных материалов, а также для измерения немагнитных (или слабо магнитных) покрытий на ферромагнитном основании. В непрерывном технологическом потоке этот метод практически не применяется, поскольку объект находится в контакте с магнитом.

Второй метод измерения толщины листов и покрытий основан на изменении сопротивления магнитной цепи, составленной из листа и сердечника электромагнита. Его используют при измерении толщины листов из ферромагнитных материалов.

Наибольшее распространение получил третий метод - метод вихревых токов (или метод электромагнитной индукции). Этот метод заключается в следующем: испытуемый объект помещают в магнитное поле катушки или в катушки, питаемые переменным током. Переменное магнитное поле индуктирует в испытуемом объекте вихревые токи, которые в свою очередь создают собственное магнитное поле, направленное против основного магнитного поля. В результате взаимодействия этих магнитных полей электрические параметры катушки изменяются. Величина вихревых токов и их магнитного поля при всех прочих равных условиях зависит от свойств испытуемого объекта. Поэтому с изменением этих свойств будут изменяться и электрические параметры катушки.

3    Принцип действия пневматических измерителей толщины листов основан на зависимости между расходом сжатого газа и площадью проходного сечения отверстия. При адиабатическом истечении эта зависимость может быть выражена формулой

 

рх = ,

 

где р - давление газа перед измерительной камерой;

рх - давление газа в измерительной камере;

S1 - проходное сечение в измерительную камеру с диаметром d;

S2 - проходное сечение зазора.

При постоянных размерах проходного сечения S1 и величине давления р давление в измерительной камере однозначно определяется размерами проходного зазора S2.

Для поддержания давления воздуха постоянным в пневматических измерительных системах перед измерительной камерой применяют специальные устройства - стабилизаторы, перед которыми обычно устанавливают фильтры для очистки воздуха.

Пневматические датчики обладают большой инерционностью, особенно если для измерения давления рх применяют жидкостные манометры. Кроме того, они могут быть использованы только в свободной атмосфере.

Для измерения толщины проката в основном пользуются дифференциальным методом измерения, при котором положение контролируемого листа не оказывает влияния на точность измерения. В связи с тем, что показания пневматических датчиков зависят от скорости листов, данный метод применяют на станах холодной прокатки главным образом для измерения тонкой ленты при скорости прокатки < 2 м/сек.

Ультразвуковые толщиномеры. Ультразвуковые колебания широко используют при определении толщины изделия (лист, стенка трубы), а также и в дефектоскопии.

В зависимости от упругих свойств среды в ней могут распространяться упругие волны различных типов, отличающиеся направлением смещения колеблющихся частиц. Если колебания частиц происходят в направлении, совпадающем с направлением распространения волны (с направлением луча), то такие волны называют продольными. Продольные волны могут распространяться в твердой, жидкой и газообразной средах. Вследствие того, что частицы среды при распространении в ней продольных упругих волн колеблются в направлении луча, структура продольной волны представляет собой чередование зон сжатия и разрежения. Продольные упругие колебания с частотой от 16 до 20 кгц воспринимаются человеком в виде звука. Продольные колебания более низких и более высоких частот не слышны и их называют соответственно инфра- и ультразвуковыми.

Если направление колебаний частиц среды перпенди­кулярно направлению распространения волны, то волны называют поперечными или сдвиговыми. Сдвиговые волны могут распространяться только в твердой среде; газы и жидкости не обладают сдвиговой упругостью.

На свободной поверхности твердого тела могут распространяться поверхностные волны или волны Релея. При этом частицы совершают движение по эллипсам, ориентированным в плоскости, образованной лучом и нормалью к поверхности тела. Амплитуда колебаний частиц по мере удаления от свободной поверхности убывает по экспоненциальному закону, и поэтому волна распространяется в глубь тела лишь на глубину порядка длины волны.

При распространении ультразвуковых колебаний (УЗК) в тонком листе, могут возникать нормальные или свободные волны.

Нормальные волны возбуждаются обычно в результате трансформации продольных УЗК, падающих на поверхность листа под некоторыми углами, отличными от нуля. При этом фазовая скорость нормальной волны должна совпадать с фазовой скоростью падающей продольной волны.

Для излучения и приема обычно используют пьезоэлектрические преобразователи.

При измерении толщины листов наибольшее распространение получили резонансный метод и эхо-метод. Этими методами можно измерять толщину изделия при одностороннем доступе (например, трубы), а также выявлять расслоения в листах, в биметаллах и т.д.

Основное преимущество ультразвукового метода перед электромагнитными, рентгеновскими и другими методами контроля состоит в независимости результатов измерения от неоднородности и непостоянства электрической и магнитной структуры материала изделия и возможности измерения с высокой точностью как малых, так и больших толщин.

 

Для контроля толщины ленты, прокатываемой на непрерывном стане холодной прокатки 630 и находящейся в движении между клетями стана (скорость перемещения выше 10 м/сек), необходимо применение такого метода, который мог бы обеспечить непрерывное измерение толщины движущейся полосы с достаточной точностью и передачу снятых сигналов на какое-либо считывающее устройство. Таким методом можно считать бесконтактный метод, использующий приборы, относящиеся по своему принципу действия к приборам, основанным на измерении степени поглощения электромагнитного излучения.

 



2020-02-03 186 Обсуждений (0)
Классификация методов измерения толщины      холоднокатаных полос и обоснование выбора наиболее подходящего из них 0.00 из 5.00 0 оценок









Обсуждение в статье: Классификация методов измерения толщины      холоднокатаных полос и обоснование выбора наиболее подходящего из них

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (186)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.014 сек.)