Мегаобучалка Главная | О нас | Обратная связь


Стандартные схемы программ



2020-02-04 266 Обсуждений (0)
Стандартные схемы программ 0.00 из 5.00 0 оценок




Задание к курсовой работе

 

Написать программу решения задачи, номер которой совпадает с номером в журнале (вариант №5).

Составить и исследовать ССП в линейной и графовой формах.

Указать интерпретацию ССП и составить протокол выполнения программы.

Построить и исследовать инварианты и ограничения цикла(ов).

Доказать частичную и полную правильность программы.

Представить схему программы в виде сети Петри и осуществить анализ ее свойств на основе дерева достижимости.

Задача к курсовой работе

Вариант 5

Задано множество прямых на плоскости (коэффициентами своих уравнений). Подсчитать количество точек пересечения этих прямых.

 


Стандартные схемы программ

 

Базис класса стандартных схем программ.

Стандартные схемы программ (ССП) характеризуются базисом и структурой схемы.

Базис класса фиксирует символы, из которых строятся схемы, указывает их роль (переменные, функциональные символы и др.), задает вид выражений и операторов схем.

Полный базис В класса стандартных схем состоит из 4-х непересекающихся, счетных множеств символов и множества операторов - слов, построенных из этих символов.

Множества символов полного базиса:

Х = {x, х1, х2..., у, у1 у2..., z, z1, z2...} - множество символов, называемых переменными;= {f(0), f(1), f(2)..., g(0), g(1), g(2)..., h(0), h(1), h(2)...}- множество функциональных символов; верхний символ задает местность символа; нульместные символы называют константами и обозначают начальными буквами латинского алфавита a, b, c...;

Р = {р(0), р(1), р(2)...; q(0), q(1), q(2)...; } - множество предикатных символов; р(0), q(0) - ; нульместные символы называют логическими константами;

{start, stop, ...,:= ит. д.}- множество специальных символов.

Термами (функциональными выражениями) называются слова, построенные из переменных, функциональных и специальных символов по следующим правилам:

односимвольные слова, состоящие из переменных или констант, являются термами;

слово τ вида f(n)(τ1, τ2...τn), где τ1, τ2...τn - термы, является термом;

те и только те слова, о которых говорится в п.п. 1,2, являются термами.

Примеры термов: х, f(0), а, f(1)(х), g(2)(x, h(3)(y, a)).

Тестами (логическими выражениями) называются логические константы и слова вида р(n)(τ1, τ2,...,τn). Примеры: p(0), p(0)(х), g(3)(x, y, z), p(2) (f(2(x, y)). Допускается в функциональных и логических выражениях опускать индексы местности, если это не приводит к двусмысленности или противоречию.

Множество операторов включает пять типов:

начальный оператор - слово вида start(х1, х2...хк), где k ≥0, а х1, х2...хк - переменные, называемые результатом этого оператора;

заключительный оператор - слово вида stop(τ1, τ2...τn), где n ≥0, а τ1, τ2...τn - термы; вхождения переменных в термы τ называются аргументами этого оператора;

оператор присваивания - слово вида х := τ, где х - переменная (результат оператора), а τ - терм; вхождения переменных в термы называются аргументами этого оператора;

условный оператор (тест) - логическое выражение; вхождения переменных в логическое выражение называются аргументами этого оператора;

оператор петли - односимвольное слово loop.

Среди операторов присваивания выделим случаи: когда τ - переменная, то оператор называется пересылкой (х:=у) и когда τ - константа, то оператор называется засылкой (х:=а).

Подклассы используют ограниченные базисы. Так, например, подкласс У1 имеет базис:

{х1, х2}, {а, f(1)}, {p(1)},{start,stop, (,),:=, ,}и множество операторов {start(х1, х2); х1:=f(x1), x2=f(x2), x1:=а, х2:=а, р(х1), р(х2), stop(х1,х2)}, т. е. схемы из этого подкласса используют две переменные, константу а, один одноместный функциональный символ, один предикатный символ и операторы указанного вида.[1]


Графовая форма стандартной схемы

Представим стандартную схему программ как размеченный граф, вершинам которого приписаны операторы из некоторого базиса В.

Стандартной схемой в базисе В называется конечный (размеченный ориентированный) граф без свободных дуг и с вершинами следующих пяти видов:

Начальная вершина (ровно одна) помечена начальным о1ператором. Из нее выходит ровно одна дуга. Нет дуг, ведущих к начальной вершине.

Заключительная вершина (может быть несколько). Помечена заключительным оператором. Из нее не выходит ни одной дуги.

Вершина-преобразователь. Помечена оператором присваивания. Из нее выходит ровно одна дуга.

Вершина-распознаватель. Помечена условным оператором (называемым условием данной вершины). Из нее выходит ровно две дуги, помеченные 1 (левая) и 0 (правая).

Вершина-петля. Помечена оператором петли. Из нее не выходит ни одной дуги.

Конечное множество переменных схемы S составляют ее память ХS.

Из определения следует, что один и тот же оператор может помечать несколько вершин схемы.

Вершины именуются (метки вершины) целым неотрицательным числом (0, 1, 2...). Начальная вершина всегда помечается меткой 0.

Схема S называется правильной, если на каждой дуге заданы все переменные.

Вершины изображены прямоугольниками, а вершина-распознаватель - овалом. Операторы записаны внутри вершины. [1]

Линейная форма стандартной схемы

Для использования линейной формы СПП множество специальных символов расширим дополнительными символами {:,goto, if, then, else}. СПП в линейной форме представляет собой последовательность инструкций, которая строится следующим образом:

если выходная дуга начальной вершины с оператором start(х1,..., хn) ведет к вершине с меткой L, то начальной вершине соответствует инструкция:

0: start(х1,..., хn) goto L;

если вершина схемы S с меткой L - преобразователь с оператором присваивания х:=τ, выходная дуга которого ведет к вершине с меткой L1, то этому преобразователю соответствует инструкция:

L: x: =τgotoL1;

если вершина с меткой L - заключительная вершина с оператором stop(τ1,...τm), то ей соответствует инструкция

L:stop(τ1,..., τm);

если вершина с меткой L - распознаватель с условием р(τ1,...τk), причем 1-дуга ведет к вершине с меткой L1, а 0-дуга - к вершине с меткой L0, то этому распознавателю соответствует инструкция

L: if р(τ1,...τk) then L1 else L0;

если вершина с меткой L - петля, то ей соответствует инструкция : loop. [1]

Интерпретация стандартных схем программ

ССП не является записью алгоритма, поэтому позволяет исследовать только структурные свойства программ, но не семантику вычислений. При построении «семантической» теории схем программ вводится понятие интерпретация ССП. Определим это понятие.

Пусть в некотором базисе В определен класс ССП. Интерпретацией базиса В в области интерпретации D называется функция I, которая сопоставляет:

каждой переменной х из базиса В - некоторый элемент d = I(x) из области интерпретации D;

каждой константе а из базиса В - некоторый элемент d = I(а) из области интерпретации D;

каждому функциональному символу f(n) - всюду определенную функцию F(n)=I(f(n));

каждой логической константе р(0) - один символ множества { 0,1 };

каждому предикатному символу р(n) - всюду определенный предикат P(n) = I(p(n)).

Пара (S,I) называется интерпретированной стандартной схемой (ИСС), или стандартной программой(СП).

Определим понятие выполнения программы.

Состоянием памяти программы (S,I) называют функцию W: XS® D, которая каждой переменной x из памяти схемы S сопоставляет элемент W(x) из области интерпретации D.

Значение терма τ при интерпретации I и состоянии памяти W (обозначим τI(W)) определяется следующим образом:

) если τ=х, x - переменная, то τI(W) = W(x);

2) если τ=a, a - константа, то τI(W) = I(a);

3) если τ=f(n)(τ1, τ2..., τn), то τI(W)= I(f(n))(τ1I(W), τ2I(W),..., τnI(W)).

Аналогично определяется значение теста p при интерпретации I и состоянии памяти W или pI(W): если p=р(n)(τ1, τ2..., τn), то pI(W)= I(p(n))(τ1I(W), τ2I(W),... τnI(W)), n ≥0.

Конфигурацией программы называют пару U=(L,W), где L - метка вершины схемы S, а W - состояние ее памяти. Выполнение программы описывается конечной или бесконечной последовательностей конфигураций, которую называют протоколом выполнения программы (ПВП).

Протокол (U0, U1,..., Ui, Ui+1,...) выполнения программы (S,I) определяем следующим образом (ниже ki означает метку вершины, а Wi - состояние памяти в i-й конфигурации протокола, Ui=(ki,Wi)):=(0, W0), W0 - начальное состояние памяти схемы S при интерпретации I.

Пусть Ui=(ki, Wi) - i-я конфигурация ПВП, а О - оператор схемы S в вершине с меткой ki. Если О - заключительный оператор stop(τ1, τ2... τn), то Ui - последняя конфигурация, так что протокол конечен. В этом случае считают, что, программа (S,I) останавливается, а последовательность значений τ1I(W), τ2I(W),..., τnI(W) объявляют результатомval(S,I) выполнения программы (S,I). В противном случае, т. е. когда О - не заключительный оператор, в протоколе имеется следующая, (i+1)-я конфигурация Ui+1 = (ki+1, Wi+1), причем

а) если О - начальный оператор, а выходящая из него дуга ведет к вершине с меткой L, то ki+1 = L и Wi+1 = Wi;

б) если О - оператор присваивания х:=τ, а выходящая из него дуга ведет к вершине с меткой L, то ki+1 = L, Wi+1 = Wi, Wi+1(х) = τ1(Wi);

в) если О - условный оператор p и pI(Wi) = Δ, где Δ Î{0,1}, а выходящая из него дуга ведет к вершине с меткой L, то ki+1 = L и Wi+1 = Wi;

г) если О - оператор петли, то ki+1 = L и Wi+1 = Wi, так что протокол бесконечен.

Таким образом, программа останавливается тогда и только тогда, когда протокол ее выполнения конечен. В противном случае программа зацикливаетсяи результат ее выполнения не определен. [1]

 

Построение циклов исходя из инвариантов и ограничений

 

Существуют две стратегии построения циклов при данных предусловии Q, постусловии R, инварианте Р и ограничивающей функции t. Первая приводит к циклу с одной охраняемой командой: doB>Sod. Во второй учитываются преимущества, предоставляемые гибкостью конструкции повторения. [1]

Условия для проверки циклов.

. Покажите, что инвариант цикла Р истинен перед началом выполнения цикла.

. Покажите, что "i: 1 £i£n{P AND Bi} Si {P} - выполнение охраняемой команды завершается при истинном Р.

3. Покажите, что P AND NOT BB . R - в момент завершения цикла R результат истинен.

4. Покажите, что P AND NOT BB . (t > 0) - до завершения цикла ограничение снизу справедливо.

. Покажите, что "i: 1 £i£n{P AND Bi} t1 := t; Si {t < t1} - каждый шаг цикла приводит к уменьшению ограничивающей функции t. [1]

Стратегия построения циклов №1.

. Построить охрану В такую, что P AND NOT B ÞR;

. Построить тело цикла так, чтобы оно уменьшало ограничивающую функцию при сохранении инварианта цикла. [1]

Стратегия построения циклов №2.

. Стройте охраняемые команды так, чтобы каждая из них приближала цикл к завершению, а соответствующая охрана обеспечивала сохранение инварианта.

. Завершайте процесс создания охраняемых команд, если их создано достаточно для доказательства P AND NOT BB ÞR[1].

 



2020-02-04 266 Обсуждений (0)
Стандартные схемы программ 0.00 из 5.00 0 оценок









Обсуждение в статье: Стандартные схемы программ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (266)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)