Мегаобучалка Главная | О нас | Обратная связь


Теоретическая часть работы



2020-02-04 245 Обсуждений (0)
Теоретическая часть работы 0.00 из 5.00 0 оценок




ЛИТЕРАТУРА

 

1. Ландсберг Г.С. Оптика.- М.: Наука, 1976.- 927с.

2. Сивухин Д.В. Общий курс физики. Оптика.- М.: Наука, 1980.- 752с.

3. Годжаев Н.М. Оптика.- М.: Высшая школа, 1977.- 495с.

4. Дитчберн Р. Физическая оптика.- М.: Наука. 1965.- 632с.

 


Лабораторная работа №2 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ ИНТЕРФЕРЕНЦИОННЫМ МЕТОДОМ

 

Цель работы: 1) вычислить радиус кривизны выпуклой поверхности линзы; 2) измерить длину световой волны.

Приборы и принадлежности: микроскоп, микрометрическое устройство для измерения диаметра колец Ньютона, плосковыпуклая линза, плоскопараллельная пластинка, ртутная лампа (или электролампа), светофильтры.

 

Теоретическая часть работы

 

Общая теория явления интерференции описана в лабораторной работе №6.

 

Рисунок 1 – Принципиальная схема наблюдения интерференционной картины колец Ньютона

 

В данной работе определение длины световой волны осуществляется методом интерференционных колец Ньютона. Схема опыта для получения интерференционной картины в виде колец Ньютона приведена на рис.1. Плосковыпуклая линза L большого радиуса кривизны (1-2 м) накладывается выпуклой стороной на плоскую стеклянную пластинку P. Между соприкасающимися в точке A поверхностями L линзы и пластинки P образуется клинообразный воздушный слой. С помощью наклоненного под углом 450 полупрозрачного зеркала S свет от источника I направляется на объектив O, превращающий падающий на него от зеркала S световой пучок в параллельный, который и освещает линзу L и пластинку P, причем угол падения равен нулю. После отражения от выпуклой поверхности L и соприкасающейся с ней поверхности пластинки P свет проходит в обратном направлении в объектив О, затем в полупрозрачное зеркало S и собирается в точке I’, являющейся изображением точки I. Получившиеся два когерентные световые пучка дают интерференционную картину в виде колец с центром в точке соприкосновения линзы и пластинки P. Т.к. изображение колец Ньютона, даваемое объективом в плоскости P, очень мало, то его рассматривают через окуляр О. В случае освещения белым светом кольца будут окрашены. При освещении монохроматическим светом получаются светлые и темные кольца с убывающей шириной (рис.2).

 

Рисунок 2 – Схема обозначения правых и левых краев колец Ньютона при измерениях с помощью микрометра.

 

При отражении от нижней пластинки, представляющей оптически более плотную среду по сравнению с воздухом, волны меняют фазу на противоположную, что эквивалентно изменению пути на l/2. В месте соприкосновения линзы с пластинкой остается тонкая воздушная прослойка, толщина которой значительно меньше длины волны. Поэтому разность хода между лучами, возникающими в этой точке, определяется лишь потерей полуволны при отражении от пластинки, т.е. D=l/2. Следовательно, в центре интерференционной картины наблюдается темное пятно. Т.к. между линзой L и пластинкой P находится воздух (показатель преломления воздуха равен 1) и пучок света падает нормально к пластинке и, практически, к нижней поверхности линзы (кривизна линзы мала), то разность хода в этом случае будет равна D=2h + l/2.

 

Рисунок 3 – Геометрические построения для вычисления радиусов колец Ньютона.

 

Для вычисления радиусов колец дополним выпуклую поверхность линзы до полной сферы (рис.3). Если BС - диаметр, то квадрат длины отрезка АО, который мы обозначим через x2, по известной геометрической теореме x2=АО2=(СB + h)2-CO 2. Поскольку СO = CB = R (R - радиус сферы), и, в силу того, что R >> h, выражение для x2 можно записать следующим образом: x2=2Rh. Тогда D=x2/R+l/2. Светлые кольца получатся при D=ml, где m - целое число. Из этого условия можно найти радиус rm m- го светлого кольца:

 

. (1)

 


Аналогично для радиуса m - го темного кольца:

 

. (2)

 

Т.о, измерив экспериментально радиус темного или светлого m- го кольца rm и радиус кривизны линзы R можно вычислить длину световой волны. Однако вычислять по формулам (1) или (2) длину световой волны на практике не удобно, поскольку в измерениях может присутствовать большая систематическая ошибка. Для того, чтобы ее избежать, измеряют радиусы m - го и k - го колец и, вычитая их друг из друга (это вычитание приводит к уничтожению ошибки), получают следующее выражение для длины световой волны:

 

. (3)

 

Описание экспериментальной установки

Для наблюдения и измерения радиусов колец Ньютона применяется микроскоп с длиннофокусным объективом и микрометрическим винтом. На предметный столик микроскопа помещается стеклянная пластинка с подложенной под нее черной бумагой или же пластинка из черного стекла. Поверх пластинки кладется плосковыпуклая линза с большим радиусом кривизны (R»1,5м). Вся эта система заключена в металлическую оправу, имеющую винты для регулировки ширины колец Ньютона.

При выполнении работы, прежде всего, нужно получить картину колец Ньютона на установке с линзой и плоской пластинкой. При визуальном наблюдении эти кольца в отраженном свете будут выглядеть как маленькое темное пятнышко на поверхности линзы. Затем установка помещается на предметный столик микроскопа. После этого добиваются, чтобы свет, падающий из объектива, освещал это пятнышко и, сфокусировав микроскоп, наблюдают кольца Ньютона в окуляр микроскопа.

 

Выполнение работы

 

1. Вычисление радиуса кривизны выпуклой поверхности линзы.

1. Поместите на предметный столик стеклянную пластинку с линзой так, чтобы свет от ртутной лампы падал на линзу. Получите отчетливое изображение колец Ньютона.

2. Установите оранжевый светофильтр (lоранж.=630 нм).

3. Произведите отсчеты по барабану микрометра левого и правого краев пяти темных колец, видимых в окуляре. Для этого переместите столик микроскопа путем вращения микрометрического винта, так, чтобы нить, натянутая в окуляре, совпала с наружным краем левого (правого) темного кольца. Запишите показания барабана микрометрического винта. Затем совместите нить с правым (левым) наружным краем этого же кольца, и, в свою очередь, запишите показания барабана микрометрического винта. Вычислите радиус r интерференционного кольца. Отсчеты производить в соответствии с рис.2. Результаты измерений занести в таблицу №1.

 

Таблица 1

 

4. Вычислить радиус кривизны линзы R по формуле (4):

 

. (4)


2. Определение длины световой волны.

1. Вместо оранжевого светофильтра поочередно установить другие светофильтры, для которых длина волны неизвестна.

2. Как и в первом задании для каждого светофильтра произвести отсчеты по барабану микрометра левого и правого краев пяти видимых колец Ньютона. Результаты измерений занести в таблицу, аналогичную таблице №1, предварительно указав цвет светофильтра.

3. Используя формулу (3) и известное из первого задания значение радиуса кривизны линзы R вычислите длину волны света l, считая, что k=1, а m пробегает значения 2, 3, 4, 5. Произведите усреднение l по числу рассчитанных значений.

 


КОНТРОЛЬНЫЕ ВОПРОСЫ

 

1. Почему наблюдаемая интерференционная картина состоит из ряда темных и светлых колец?

2. Запишите условия максимумов и минимумов света при интерференции когерентных световых пучков.

3. Чем различаются картины колец Ньютона в отраженном и проходящем свете?

4. Почему в данной работе радиус кривизны линзы выбран большим?

5. Можно ли для наблюдения колец Ньютона пользоваться достаточно протяженными источниками света?

6. Что произойдет в данной работе с интерференционной картиной, если линзу слегка приподнять над пластинкой?

7. Как изменится картина колец Ньютона, если пространство между линзой и пластинкой заполнить водой?

 


ЛИТЕРАТУРА

 

1. Сивухин Д. В. Общий курс физики. Т.3. Оптика. М.: Наука, 1985.- 752с.

2. Савельев И. В. Курс общей физики. Т.2. Электричество и магнетизм. Волны. Оптика. М.: Наука, 1988.- 496c.

3. Фейнман Р., Лейтон Р., Сэндс М. Феймановские лекции по физике. Т.3-4. Излучение. Волны. Кванты. М.: Мир, 1977.- 496 с.

4. Крауфорд Ф. Берклеевский курс физики. Волны. М.: Наука, 1984.- 512с.

 


Лабораторная работа №3 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ ДИФРАКЦИОННЫМ МЕТОДОМ

 

Цель работы: измерить длину световой волны с помощью дифракционной решетки.

Приборы и принадлежности: спектрометр, дифракционная решетка, неоновая лампа.

 

Теоретическая часть работы

 

Под дифракцией света понимают всякое отклонение от прямолинейного распространения световых лучей, если оно не может быть истолковано как результат их отражения, преломления или изгибания в средах с непрерывно меняющимся показателем преломления. Решение дифракционной задачи заключается в нахождении распределения освещенности на экране в зависимости от размеров и формы препятствий, вызывающих отклонение света от прямолинейного распространения. Строгое математическое решение дифракционной задачи возможно только на основе электромагнитной теории Максвелла. Однако оно является очень сложным. В упрощенном варианте решение дифракционной задачи может быть получено путем использования принципа Гюйгенса-Френеля.

Принцип Гюйгенса заключается в следующем. Каждую точку всякой волны можно рассматривать как центр новой сферической элементарной волны. Волна, получающаяся в результате наложения этих элементарных волн, совпадает с непосредственно распространяющейся первоначальной волной. Гюйгенс считал, что результирующая волна является просто огибающей всей совокупности сферических элементарных волн.

Френель усовершенствовал принцип Гюйгенса тем, что учел различие фаз элементарных волн. Измененный таким образом принцип Гюйгенса называют принципом Гюйгенса-Френеля. Согласно этому принципу при распространении волн с ограниченным фронтом свет будет наблюдаться только в тех местах, где элементарные волны от всех точек распространяющейся волны складываются в фазе, усиливая друг друга. Наоборот, в местах, где элементарные волны, будучи в противофазе, при сложении гасят друг друга, будет наблюдаться ослабление света. На основе принципа Гюйгенса-Френеля можно дать объяснение всем явлениям дифракции. Дифракционные явления по своему характеру разбиваются на два больших класса. Первый класс явлений, называемый дифракцией Френеля, относится к случаю, когда дифракционная картина наблюдается на конечном расстоянии от ограничивающих падающую волну экранов. Второй класс явлений, называемый дифракцией Фраунгофера, относится к случаю, когда дифракционная картина наблюдается на бесконечном расстоянии от экранов, ограничивающих падающую волну, т.е. дифрагирующие пучки света являются параллельными.

В данной лабораторной работе рассматривается только дифракция Фраунгофера, т.е. когда дифракционная картина образована системой параллельных лучей.

Дифракционная решетка как спектральный прибор

Дифракционная решетка очень часто используется для разложения света в спектр и является одним из важнейших спектральных приборов, с помощью которого можно, в частности, определить длину световой волны. Она представляет собой плоскую стеклянную или металлическую поверхность, на которой делительной машинкой нарезано очень много (до сотен тысяч) прямых равноотстоящих штрихов. На стеклянных решетках наблюдения можно производить как в проходящем, так и в отраженном свете, на металлических - только в отраженном.

 


 

Рассмотрим простейшую идеализированную решетку, состоящую из одинаковых равноотстоящих параллельных щелей, сделанных в непрозрачном экране (рис.1). Ширину щели обозначим через b,, ширину непрозрачной части экрана между двумя соседними щелями - через a. Величина d=a+b называется периодом решетки. В решетке осуществляется многолучевая интерференция когерентных дифрагировавших пучков света, исходящих от щелей решетки при ее освещении. Дифракционная картина наблюдается по методу Фраунгофера, т.е. либо на бесконечно удаленном экране, либо в фокальной плоскости линзы, поставленной на пути дифрагировавшего света.

Пусть на решетку перпендикулярно к ее поверхности падает плоская монохроматическая волна (рис.1). Вследствии наложения элементарных волн от всех щелей дифракционной решетки в фокальной плоскости линзы, поставленной на пути лучей, возникает сложная дифракционная картина. При освещении белым светом она имеет вид цветных полос, параллельных щели, и носит название спектра. Распределение интенсивности дифргировавшего света в зависимости от угла дифракции Ө имеет вид:

 

, (1)

 


где I0 – интенсивность света под углом Ө=0о; N – число щелей; , . Первая функция  в формуле (1) описывает дифракцию Фраунгофера на одной щели, вторая – вклад других щелей в дифракционную картину. Формула (1) – основная в теории дифракционной решетки.

При освещении дифракционной решетки пучком параллельных и когерентных лучей в результате дифракции произойдет отклонение световых волн в различных направлениях. Если в фокальной плоскости линзы, на которую происходит падение дифрагировавших световых волн, поместить экран, то в определенных участках экрана получатся дифракционные максимумы и минимумы. Если решетку осветить белым светом, то после дифракции на решетке белый свет разложится на составляющие, т.е. каждая световая волна отклонится на определенный угол, который зависит от ее длины. И на экране в местах максимумов будут наблюдаться изображения щелей, окрашенные в различные цвета. В данном случае вся картина на экране носит название дифракционного спектра.

 

 

В направлениях, определяемых условием

 

dsinΘ =ml (m = 0, ± 1, ± 2, ...), (2)

 


получаются максимумы, интенсивность которых в N2 превосходит интенсивность волны от одной щели в том же направлении. Они называются главными максимумами. Целое число m называется порядком главного максимума или порядком спектра (рис.2). Условие (2) определяет направления, в которых излучения от всех щелей решетки приходят в точку наблюдения в одинаковых фазах, а потому усиливают друг друга Однако, в таких направлениях при отдельных значениях m могут и не возникнуть максимумы. Это будет, когда I1=0, т.е. в направлениях на дифракционные минимумы от одной щели. Например, если a=b, то все главные максимумы четных порядков не появятся, поскольку условие появление главного максимума порядка 2n имеет вид dsinΘ=2nl. При d=2b оно переходит в bsinΘ=nl, т.е. в условие дифракционного минимума на щели. Т.о. в рассматриваемом направлении, ни одна щель, а потому и решетка в целом не пропускают свет. Минимумы дифракционной картины, получающиеся при обращении I1 в нуль называются главными минимумами.

Кроме того выражения (1) обращается в нуль, если sin(Nd/2)=0, но sin(d)¹0, т.е. при Nd=(Nm+p)p, или

 

dsinΘ=(m+p/N)l (p=1, 2, ..., N-1). (3)

 

В соответствующих направлениях получаются дифракционные минимумы, в которых интенсивность света равна нулю. Они называются побочными минимумами. Между двумя соседними побочными минимумами получается максимум. Такие максимумы называются добавочными. Между двумя соседними главными максимумами располагается (N-1) минимумов и (N-2) добавочных максимумов.

Интенсивности главного максимума и ближайших к нему второстепенных максимумов находятся в следующих отношениях

 


1:4/(9p2):4/(25p2):4/(49p2):.. =1:0.045:0.016:0.0083:...

 

Добавочные максимумы слабы по сравнению с главными. При большом числе щелей они обычно не играют роли. Второстепенные максимумы создают более или менее равномерный слабый фон, на нем выступают узкие и резкие главные максимумы, в которых концентрируется практически весь дифрагировавший свет.

Из условия (2) следует, что при m=0, sinΘ =0. На экране получается дифракционный максимум, называемый нулевым. При m=±1 по обе стороны от нулевого возникают два дифракционных максимума первого порядка. При освещении дифракционной решетки белым светом каждый максимум будет представлять собой спектр, отделенный от других темными промежутками.

Число дифракционных спектров ограничено и определяется условием

 

sinΘ =ml/d£1. (4)

 

Из (4) следует, что чем больше постоянная решетки, тем большее число максимумов можно наблюдать, однако максимумы становятся в данном случае менее яркими.

 

Описание экспериментальной установки

 

В работе используется распространенная в лабораторной практике решетка, представляющая собой стеклянную пластинку, на которой с помощью делительной машины специальным алмазным резцом нанесен ряд параллельных штрихов.

Для измерения угла отклонения  применяется гониометр, схема которого представлена на рисунке 3.

 


 

Гониометр состоит из зрительной трубы Т, коллиматора К, столика С, лимба Е, нониуса Н. Коллиматор служит для создания параллельного пучка света. Он состоит из наружного тубуса с объективом Об и внутреннего тубуса с входной щелью Щ устанавливаемой в фокальной плоскости объектива. Из коллиматора выходит плоская световая волна (параллельный пучок света) и падает на дифракционную решетку. Пучки света собираются объективом зрительной трубы и образуют в фокальной плоскости действительное изображение щели коллиматора. В поле зрения окуляра одновременно видны крест нитей и действительное изображение щели (дифракционный максимум). Перемещая зрительную трубу, можно совместить крест нитей с любым из дифракционных максимумов. Источником исследуемого излучения является неоновая лампа.

 

Выполнение работы

 

При работе с дифракционной решеткой основной задачей является точное измерение углов, на которых наблюдаются максимумы для разных длин волн.

Приступая к выполнению работы, необходимо произвести юстировку гониометра. Для этого нужно:

1. Произвести установку зрительной трубы на бесконечность, т. е. на отчетливое видение удаленных предметов;

2. Источник света (неоновую лампу) расположить против щели коллиматора;

3. Установить зрительную трубу так, чтобы ее оптическая ось была продолжением оси коллиматора. Эта будет достигнуто тогда, когда вертикальная линия окуляра трубы будет находиться посередине изображения щели;

4. Поместить решетку на столике таким образом, чтобы нить окуляра была посередине центральной наиболее яркой полосы (спектра нулевого порядка). Чтобы получить хорошие спектры решетка должна быть установлена перпендикулярно пучку лучей так, чтобы ее штрихи шли параллельно щели коллиматора.

Дифракционная решетка с известным периодом может быть использована для измерения длин волн. При выполнении работы решетка остается неподвижной, а зрительная труба поворачивается так, чтобы изображение исследуемой спектральной линии совпало с нитью окуляра.

Длину волны определяют из формулы решетки . Здесь d=0,01мм; m- порядок спектра или номер максимума. Это уравнение является основной расчетной формулой для вычисления длин световых волн при помощи дифракционных решеток.

Измерение длины волны сводится к определению угла  отклонения лучей от первоначального направления. Далее работа выполняется в следующем порядке.

1. Произвести отсчет положения нулевой линии n0. Для этого нить окуляра нужно совместить с серединой спектра нулевого порядка (центральной яркой полосой) и, с помощью кругового лимба и нониуса, определить значение n0.

2. Аналогично произвести отсчеты для красной, желтой и зеленой линий спектров 1 и 2 порядков, каждый раз совмещая нить окуляра с соответствующей линией. Измерения проводить в порядке, показанном на рисунке 4.

3. Результаты измерений занести в таблицу 1.

 

 

4. Если все отсчеты справа обозначить через  , а слева – , то угол  для одной и той же линии может быть подсчитан тремя способами (формулы приведены ниже):

 

.

 

Для зеленой линии, например I порядка, n1 =n1, а n’1=n2 , для желтой линии I порядка n1=n3, n’1=n4 и т.д. (см. таблицу 1).

5. Зная угол, определить длину волны  для каждой линии спектра.

6. Подсчитать относительные погрешности измерений ,%

 


Таблица 1.

Линия спектра порядок спектра номер линии по рисунку отсчет по лимбу справа отсчет по лимбу слева ,нм ,%
  0 0 n0      
зеленая I 1 2 n1 n2    
желтая I 1 2 n3 n4    
красная I 1 2 n5 n6    
зеленая II 1 2 n7 n8    
желтая II 1 2 n9 n10    
красная II 1 2 n11 n12    

 


КОНТРОЛЬНЫЕ ВОПРОСЫ

 

1. Какие волны называются когерентными?

2. В чем заключается явление дифракции?

3. Сформулируйте принцип Гюйгенса-Френеля.

4. Какого типа дифракция наблюдается в работе?

5. Какого цвета линия в спектре 1-го и более высоких порядков будет ближайшей к центральному максимуму?

6. Чем будут отличаться дифракционные картины, полученные от решеток с различными постоянными, но с одинаковым числом штрихов?

7. Как изменится дифракционная картина, если закрыть часть решетки как на рисунке?

8. Каков порядок следования цветов в дифракционных спектрах?

9. Какова окраска нулевого максимума? Почему она такая?

10. Как изменится дифракционная картина, если изменить ширину щели, не меняя постоянную решетки?

 


ЛИТЕРАТУРА

 

1. Сивухин Д. В. Общий курс физики. Т.3. Оптика. М.: Наука, 1985.- 752с.

2. Савельев И. В. Курс общей физики. Т.2. Электричество и магнетизм. Волны. Оптика. М.: Наука, 1988.-496 c.

3. Фейнман Р., Лейтон Р., Сэндс М. Феймановские лекции по физике. Т.3-4. Излучение. Волны. Кванты. М.: Мир, 1977.- 496 с.

4. Ландсберг Г. С. Оптика. М.: Наука, 1976.- 823 с.

5. Калитеевский Н. И. Волновая оптика. М.: Высшая школа, 1978.- 321с.

 


Лабораторная работа №4 ИССЛЕДОВАНИЕ ЗАКОНА МАЛЮСА

 

Цель работы: экспериментальная проверка закона Малюса.

Приборы и принадлежности: полупроводниковый (GaAs) лазерный источник света, фотоприеменик, гальванометр, анализатор с нанесенной на него угловой разметкой (цена одного деления 1о).

 

Теоретическая часть работы

 

С точки зрения электромагнитной теории свет представляет собой поперечные электромагнитные волны, в которых векторы напряженностей электрического E и магнитного H полей колеблются во взаимно перпендикулярных плоскоcтях. Электромагнитная волна (э/м) называется линейно поляризованной или плоскополяризованной, если электрический вектор E все время лежит в одной плоскости, в которой расположена также нормаль k к фронту волны (рис.1). Плоскость, которая содержит нормаль k к фронту, и в которой лежит электрический вектор Е э/м волны, называется плоскостью поляризации. Естественный свет не поляризован, он представляет собой совокупность световых волн, излучаемых множеством отдельных атомов, и векторы Е и Н колеблются беспорядочно во всех направлениях, перпендикулярных лучу. В естественном свете все направления колебаний вектора Е оказываются равновероятными. К естественному свету относятся дневной свет, свет лампы накаливания и др.

 


Для получения линейно поляризованного света на практике часто применяют поляроиды, изготовленные из кристаллов турмалина или геропатита. Каждый поляроид характеризуется оптической осью U, которая представляет собой выделенное направление. Физический смысл выделенного направления в данном случае заключается в следующем. Пусть на поляроид перпендикулярно его плоскости, содержащей оптическую ось, падает свет. Электрический вектор Е э/м волны можно разложить на две составляющих. Эти составляющие всегда можно выбрать так, что одна из них, например, Еy будет параллельна оптической оси U, а другая, назовем ее Еx, перпендикулярна U. Если на поляроид направить естественный свет, то через поляроид пройдут только те э/м волны, электрические векторы E которых имеют составляющие Еy (параллельные оптической оси поляроида). При этом происходит поляризация естественного света.

 

 

Т.о. поляризация света при помощи поляроидов состоит в выделении из светового пучка колебаний определенного направления. Если на поляризатор падает естественный свет, интенсивность которого Iест, то интенсивность I прошедшего поляризованного света не зависит от ориентации поляризатора (его поворота вокруг луча) и равна половине интенсивности падающего естественного света:

 


 

. (1)

 

Глаз человека не отличает поляризованный свет от естественного. Устройство, способное пропускать колеблющуюся только в определенной плоскости составляющую светового вектора Е, может также использоваться и для анализа поляризованного света; в этом случае оно называется анализатором. Если на анализатор падает частично поляризованный свет, то поворот анализатора вокруг луча сопровождается изменением интенсивности проходящего света от максимальной (плоскость анализатора совпадает с направлением уу) до минимальной.

Если плоскополяризованный свет падает на анализатор А (рис. 3), то будет пропущена составляющая

 

, (1)

 

где a - угол между плоскостью колебаний падающего света рр и плоскостью анализатора аа. Так как интенсивность света пропорциональна E2, то с учетом (1) получим:

 

, (2)


где I — интенсивность света, вышедшего из анализатора, Iо—интенсивность падающего света. Формула (2) выражает закон Малюса. При повороте анализатора вокруг луча можно найти такое его положение, при котором свет совсем сквозь него не проходит (интенсивность I становится равной нулю). Это надежный способ убедиться в том, что падающий свет полностью поляризован. Если естественный свет с интенсивностью Iест проходит последовательно сквозь поляризатор и анализатор, выходящий пучок имеет интенсивность.

 

. (3)

 

При α=0 (плоскости поляризатора и анализатора параллельны) интенсивность I максимальна и равна . "Скрещенные" поляризатор и анализатор  свет не пропускают вовсе.



2020-02-04 245 Обсуждений (0)
Теоретическая часть работы 0.00 из 5.00 0 оценок









Обсуждение в статье: Теоретическая часть работы

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (245)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)