Мегаобучалка Главная | О нас | Обратная связь


Функционирование протоколов беспроводной связи



2020-02-04 193 Обсуждений (0)
Функционирование протоколов беспроводной связи 0.00 из 5.00 0 оценок




Повсеместное распространение беспроводных сетей, развитие инфраструктуры хот-спотов, появление мобильных технологий со встроенным беспроводным решением (Intel Centrino) привело к тому, что конечные пользователи (не говоря уже о корпоративных клиентах) стали обращать все большее внимание на беспроводные решения. Такие решения рассматриваются, прежде всего, как средство развертывания мобильных и стационарных беспроводных локальных сетей и средство оперативного доступа в Интернет. Однако конечный пользователь, не являющийся сетевым администратором, как правило, не слишком хорошо разбирается в сетевых технологиях, поэтому ему трудно сделать выбор при покупке беспроводного решения, особенно учитывая многообразие предлагаемых сегодня продуктов. Бурное развитие технологии беспроводной связи привело к тому, что пользователи, не успев привыкнуть к одному стандарту, вынуждены переходить на другой, предлагающий еще более высокие скорости передачи. Речь, конечно же, идет о семействе протоколов беспроводной связи, известном как IEEE 802.11, куда входят следующие протоколы: 802.11, 802.11b, 802.11b+, 802.11a, 802.11g. В последнее время стали говорить и о расширении протокола 802.11g.

Различные типы беспроводных сетей отличаются друг от друга и радиусом действия, и поддерживаемыми скоростями соединения, и технологией кодирования данных. Так, стандарт IEEE 802.11b предусматривает максимальную скорость соединения 11 Мбит/с, стандарт IEEE 802.11b+ - 22 Мбит/с, стандарты IEEE 802.11g и 802.11a - 54 Мбит/с.

Технология DSSS

При потенциальном кодировании информационные биты - логические нули и единицы - передаются прямоугольными импульсами напряжений. Прямоугольный импульс длительности T имеет спектр, ширина которого обратно пропорциональна длительности импульса. Поэтому чем меньше длительность информационного бита, тем больший спектр занимает такой сигнал.

Для преднамеренного уширения спектра первоначально узкополосного сигнала в технологии DSSS в каждый передаваемый информационный бит (логический 0 или 1) в буквальном смысле встраивается последовательность так называемых чипов. Если информационные биты - логические нули или единицы - при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип - это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n-раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.

Чтобы уширить спектр сигнала и сделать его неотличимым от естественного шума, в принципе, можно воспользоваться произвольной (случайной) чиповой последовательностью. Однако, возникает вопрос: а как такой сигнал принимать? Ведь если он становится шумоподобным, то выделить из него полезный информационный сигнал не так то просто, если вообще возможно. Оказывается, возможно, но для этого нужно соответствующим образом подобрать чиповую последовательность. Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определенным требованиям автокорреляции. Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума. Для этого в приемнике полученный сигнал умножается на ту же чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал становится опять узкополосным, поэтому его фильтруют в узкой полосе частот и любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приемника (рис. 1).

Рис. 1. Использование технологии уширения спектра позволяет предавать данные на уровне естественного шума.


2020-02-04 193 Обсуждений (0)
Функционирование протоколов беспроводной связи 0.00 из 5.00 0 оценок









Обсуждение в статье: Функционирование протоколов беспроводной связи

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (193)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)