Мегаобучалка Главная | О нас | Обратная связь


Универсальная химическая защита



2020-02-03 154 Обсуждений (0)
Универсальная химическая защита 0.00 из 5.00 0 оценок




 

Для защиты резервуаров, реакторов, ванн, поддонов, лотков, труб и пр., в том числе и нуждающимся в ремонте, перспективным является применение термопласт-облицовок - технология STEULER. В старое бетонное сооружение вносится вкладыш из термопласта (полиэтилен высокой плотности, полипропилен), оснащенный с наружной стороны вплавленными анкерами. Системный материал монтируется на месте производства работ путем сваривания листов в конструкцию необходимой конфигурации (сложные профили возможно изготавливать на заводе) и заполняется со стороны анкеров высокоподвижным безусадочным раствором. После твердения раствора образуется единая система - бетон-термопласт-облицовка. Старое сооружение играет, таким образом, роль несъемной опалубки и не требует соответственно длительного ремонта и защиты.

Применение бетон-термопласт-облицовок в новом строительстве и ремонте имеет неоспоримые преимущества, к которым относятся:

1. Универсальная химическая стойкость материала;

2. Водонепроницаемость

3. Антиадгезионная поверхность (не зарастает и легко очищается);

4. Сохранение физических свойств при длительном воздействии агрессивных компонентов;

5. Высокая долговечность – до 50 лет эксплуатации;

6. Физиологическая и экологическая безопасность;

7. Низкая трудоемкость при монтаже и ремонте (сварка);

8. Стойкость материала к низким температурам – до -50оС;

9. Ремонтопригодность

10. Не лимитируемые сроки хранения [1,2].

 


 

Термический анализ

 

Метод исследования физико-химических и химических превращений, происходящих в минералах и горных породах в условиях заданного изменения температуры. Термический анализ позволяет идентифицировать отдельные минералы и определять их количественное содержание в смеси, исследовать механизм и скорость протекающих в веществе изменений: фазовые переходы или химические реакции дегидратации, диссоциации, окисления, восстановления. С помощью термического анализа регистрируется наличие процесса, его тепловой (эндо- или экзотермичность) характер и температурный интервал, в котором он протекает. С помощью термического анализа решается широкий круг геологических, минералогических, технологических задач. Наиболее эффективно использование термического анализа для изучения минералов, испытывающих фазовые превращения при нагревании и содержащих H2O, CO2 и другие летучие компоненты либо участвующих в окислительно-восстановительных реакциях (оксиды, гидроксиды, сульфиды, карбонаты, галогениды, природные углеродистые вещества, метамиктные минералы и др.). Метод термического анализа объединяет ряд экспериментальных методов: метод температурных кривых нагревания или охлаждения (термический анализ в первоначальном понимании), производный термический анализ (ПТА), дифференциальный термический анализ (ДТА). Наиболее распространён и точен ДТА, при котором изменяется температура среды по заданной программе в контролируемой атмосфере и регистрируется разность температур между исследуемым минералом и веществом сравнения как функция времени (скорость нагревания) или температуры. Результаты измерения изображают кривой ДТА, откладывая по оси ординат разность температур, по оси абсцисс - время или температуру.

Метод ДТА часто объединяют с термогравиметрией, дифференциальной термогравиметрией, термодилатометрией, термохроматографией.

Термогравиметрия

 

Метод термического анализа, основанный на непрерывной регистрации изменения массы (взвешивании) образца в зависимости от его температуры в условиях программированного изменения температуры среды. Программы изменения температуры могут быть различны. Наиболее традиционным является нагревание образца с постоянной скоростью. Однако нередко используются методы, в которых температура поддерживается постоянной (изотермические) или меняется в зависимости от скорости разложения образца (например, метод постоянной скорости разложения).

Наиболее часто термогравиметрический метод используется при изучении реакций разложения или взаимодействия образца с газами, находящимися в печи прибора. Поэтому современный термогравиметрический анализ всегда включает в себя строгий контроль атмосферы образца с использованием встроенной в анализатор системы продува печи (контролируются как состав, так и расход продувочного газа).

Метод термогравиметрии представляет собой один из немногих абсолютных (т.е. не требующих предварительной калибровки) методов анализа, что делает его одним из наиболее точных методов (наряду с классическим весовым анализом).

 

Дериватография

коррозия бетон термических физический превращение

Комплексный метод исследования химических и физико-химических процессов, происходящих в образце в условиях программированного изменения температуры, который основан на сочетании дифференциального термического анализа (ДТА) с термогравиметрией. Во всех случаях наряду с превращениями в веществе, происходящими с тепловым эффектом, регистрируют изменение массы образца (жидкого или твердого). Это позволяет сразу однозначно определить характер процессов в веществе, что невозможно сделать по данным только ДТА или другого термического метода. В частности, показателем фазового превращения служит тепловой эффект, не сопровождающийся изменением массы образца. Прибор, регистрирующий одновременно термические и термогравиметрические изменения, называют дериватографом. Объектами исследования могут быть сплавы, минералы, керамика, древесина, полимерные и другие материалы. Дериватография широко используется для изучения фазовых превращений, термического разложения, окисления, горения, внутримолекулярных перегруппировок и других процессов. По дериватографическим данным можно определять кинетические параметры дегидратации и диссоциации, изучать механизмы реакций. Дериватография позволяет исследовать поведение материалов в различной атмосфере, определять состав смесей, анализировать примеси в веществе и проч. Использующиеся в дериватографии программы изменения температуры могут быть различны, однако при составлении таких программ необходимо учитывать, что скорость изменения температуры влияет на чувствительность установки по тепловым эффектам. Наиболее традиционным является нагревание образца с постоянной скоростью. Кроме того могут использоваться методы в которых температура поддерживается постоянной (изотермические) или меняется в зависимости от скорости разложения образца (например метод постоянной скорости разложения). Наиболее часто дериваетография (как и термогравиметрия) используется при изучении реакций разложения или взаимодействия образца с газами, находящимися в печи прибора. Поэтому современный дериватограф всегда включает в себя строгий контроль атмосферы образца с использованием встроенной в анализатор системы продува печи (контролируются как состав, так и расход продувочного газа).



2020-02-03 154 Обсуждений (0)
Универсальная химическая защита 0.00 из 5.00 0 оценок









Обсуждение в статье: Универсальная химическая защита

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (154)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)