Адаптивные регуляризирующие алгоритмы
1. Пусть Z,U – гильбертовы пространства, а A – линейный ограниченный оператор, действующий из Z в U. Рассмотрим операторное уравнение
Без ущерба для общности будем считать, что ||A||<1. Предположим, что для 2. Эта задача может быть решена многими методами (регуляризирующими алгоритмами). Например, для ее решения можно использовать метод невязки (в обобщенной форме для решения несовместных уравнений). В этом методе приближение
Здесь
С другой стороны, можно, не зная величины р, но используя оценку 3. Сформулируем основные положения. Пусть известно, что нормальное псевдорешение
где р>0 – максимально возможное число. В общем случае число р полагается неизвестным, но при этом считается, что дана величина r. Ниже будет использована величина
В качестве 4. Методику построения алгоритмов рассмотрим на примере специализированного метода невязки. Предлагаемый РА основан на решении экстремальной задачи: при заданном параметре
(C=const > 1). Алгоритм состоит из двух шагов: 1) Найти число
2) Вычислить при Экстремальные задачи (3), (4) обладают важными свойствами. Теорема 1. Пусть выполнено (2). Тогда задача (3) однозначно разрешима при всяком Теорема 2. Если выполнено (2), то решение задачи (4) конечно, и при каждом
Теорема 3. Если Сходимость приближенных решений устанавливает Теорема 4. Если выполнено условие (2), то
Введем множество Теорема 5. При выполнении условий (2) метод (3), (4) гарантирует при любом р>0 оптимальный порядок точности приближенного решения для задач (1), у которых Рассмотрим случай, когда оператор А – вполне непрерывный. Тогда множество Отметим теперь следующий тривиальный результат. Теорема 6. Если в дополнение к условиям теоремы 5 известны, что оператор А нормально разрешим, то алгоритм (3), (4) при любом р > 0 дает точность 5. Из теорем 5,6 следует, что алгоритм (3), (4), не используя данных о степени р истокообразной представимости элемента Определение. Регуляризирующий алгоритм называется адаптивным для задач (1) с решениями из некоторого семейства множеств { Примером адаптивного РА служит алгоритм (3), (4). Имеются и другие адаптивные РА, для которых справедливы такие же результаты, как в теоремах 4-6. К числу таких РА относятся специализированный метод регуляризации А.Н. Тихонова, эквивалентный методу (3), (4), специализированный метод квазирешений, получаемый из обычного метода квазирешений [5] по схеме, которая использована в методе (3), (4). Все эти адаптивные алгоритмы были программно реализованы в системе MATLAB и показали свою высокую эффективность в численных эксперементах. 6. Остановимся особо на случае, когда при выполнении условий (2) степень истокопредсавимости р точного решения задачи (1) известна. Тогда нет необходимости использовать величину r. В качестве приближения к Справедлива Теорема 7. Гарантированы сильные сходимости: Кроме специализированного метода невязки, адаптивными являются также и некоторые другие регуляризующие алгоритмы. Сформулируем и кратко обсудим важнейшие из них. Специализированный метод регуляризации А. Н. Тихонова. Он основан на решении следующей параметрической задачи: при фиксированном β > 0 и при заданном параметре α>0 найти элемент
Алгоритм этого метода состоит из таких шагов: 1) выбор параметра регуляризации α(δ,β)>0 для каждого β > 0 по (обобщенному) принципу невязки , то есть как решение уравнения
2)использование элементов
3) принятие в качестве приближения к Теорема 8.Элемент Доказательство . Существование единственного решения задачи (5.1) следует из общей теории метода регуляризации линейных некорректных задач в гильбертовых пространствах. Существование и единственность параметра регуляризации В силу установленной в теореме 4.1 эквивалентности алгоритмов специализированного метода регуляризации и специализированного метода невязки для первого из них справедливы те же результаты о сходимости и оптимальности порядка точности приближений, что и для второго. Это можно суммировать так. Теорема 9.Пусть выполнены условия (2). Тогда для величин Этот метод оптимален по порядку точности при всяких Теорема 9 обосновывает адаптивность алгоритма специализированного метода регуляризации. Специализированный метод квазирешений. Он базируется на решении экстремальной задачи: при фиксированном числе β > 0 найти элемент
В задаче (6.1) минимизируется непрерывный выпуклый (квадратичный) функционал на замкнутом, выпуклом, ограниченном множестве гильбертова пространства. Известно, что такая задача разрешима. Будем использовать далее произвольное ее решение
здесь числовое множество
2) решить при
Множество
и это значит, что Конечность величины
Используя их можно получить сходимости
Вывод Решение – это выбор альтернативы. Принятие решений – связующий процесс, необходимый для выполнения любой управленческой функции. Лицо,принимающее решение своими решениями может повлиять на судьбы многих людей и организаций. В зависимости от уровня сложности задач, среда принятия решений варьируется в зависимости от степени риска. Условия определенности существуют, когда руководитель точно знает результат, который будет иметь каждый выбор. Методы приближённого решения некорректно поставленных задач и их применений к решению обратных задач имеют важное значение для автоматизации обработки наблюдений и для решения проблем управления. Имеется много работ (особенно советских математиков), посвященные этим методам. Существовало мнение, что некорректные задачи не могут встречаться при решении физических и технических задач и что для некорректных задач невозможно построение приближённого решения в случае отсутствия устойчивости. Расширение средств автоматизации при получении экспериментальных данных привело к большому увеличению объёма таких данных; необходимость установления по ним информации о естественнонаучных объектах потребовала рассмотрения некорректных задач. Развитие электронной вычислительной техники и применение её к решению математических задач изменило точку зрения на возможность построения приближённых решений некорректно поставленных задач. Из определения регуляризирующего алгоритма легко следует, что, если есть хотя бы один регуляризирующий алгоритм, то их может быть сколько угодно. Выбрать же тот, который дает наименьшую ошибку, или сравнивать алгоритмы, сравнивая ошибки полученных приближенных решений, при решении некорректных задач, невозможно при отсутствии априорной информации, которая фактически преобразует такие задачи в корректные. К числу адаптивных регуляризирующих алгоритмов относятся специализированный метод регуляризации А.Н. Тихонова, специализированный метод квазирешений, получаемый из обычного метода квазирешений по определенной схеме. Все эти адаптивные алгоритмы были программно реализованы в системе MATLAB и показали свою высокую эффективность в численных эксперементах.
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (359)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |