Эрозионно-аккумулятивные процессы.
Стекающая по склонам земной поверхности и по русловой сети вода производит работу, часть которой затрачивается на отрыв частиц грунта от общей массы почвогрунта и перенос их вниз по течению. При определенных условиях происходит отложение частиц грунта. Разрушение почвогрунта активизируется дождевыми каплями при их разбрызгивании. Процесс разрушения, перемещения и отложения почвогрунта и горной породы под воздействием дождя и движущейся воды называется водной эрозией. Так как водная эрозия способствует сглаживанию рельефа земной поверхности, ее, как и ветровую эрозию, относят к процессам денудации. Твердые частицы - продукты эрозии водосборов и русел, а также абразии берегов водоемов, переносимые водотоками, а также течениями в озерах, морях и водохранилищах и формирующие ложе водоемов, называются наносами. Водная эрозия и сток наносов - необратимый однонаправленный процесс, так как продукты разрушения не могут быть восстановлены в их первоначальных формах. Эрозионная деятельность водных потоков отличается большим разнообразием. В соответствии с видами стока различают эрозию склоновую и русловую. Эрозия поверхности начинается со смыва дисперсных частиц, утративших связь с основным массивом грунта. Унос частиц грунта прекращается или ослабевает после образования выступов шероховатости. С увеличением скорости движения воды происходит подмыв с тыловой стороны выступа, обуславливающий возрастание лобовой и подъемной силы потока. Подъемная сила возникает в результате несимметричного обтекания потоком частиц грунта. Пульсирующие лобовая и подъемная силы вследствие турбулентности потока отрывают частицы грунта от дна. Однако процесс водной эрозии нельзя свести только к механическому взаимодействию потока и грунта. В действительности проявляется совокупность гидромеханических, физико-химических и биологических процессов. Классификация видов эрозии Г.И. Швебса: 1. Эрозия разбрызгивания. Возникает при разбрызгивании дождевых капель, падающих на поверхность почвогрунта. Скорость падения капель увеличивается с ростом их диаметра, а диаметр капель увеличивается с усилением интенсивности дождя. 2. Поверхностный смыв. Происходит при образовании поверхностного стока в микроструктурах почвогрунта при глубине потока, соизмеримой с размерами частиц, перемещаемых водой. 3. Струйчатая эрозия. Проявляется при образовании струй и ручьев в поверхностном стоке. 4. Овражная эрозия. Образуется в результате концентрации потока на крутых склонах, сложенных легкоразмываемыми грунтами. В результате формируется глубокий врез в грунт, вызывающий обвалы, оползание и оплывание склонов. 5. Русловая эрозия. Русловая эрозия - размыв водными потоками, протекающими в руслах, коренных пород дна и берегов русла и склонов долин. Она обусловлена динамикой руслового потока и эрозионными процессами на водосборе и в русле. 6. Селевый поток. Сель - стремительный поток большой разрушительной силы, состоящий из смеси воды и рыхлых обломочных пород и возникающий внезапно в бассейнах небольших горных рек в результате интенсивных дождей или бурного таяния снега, а также прорыва завалов и морен. 7. Подземная эрозия. Проявляется в деформации трещин и ходов в почвогрунтах и горных породах под действием потока, развивается в условиях интенсивного выщелачивания и карстообразования. Эрозия сопровождается процессом аккумуляции наносов, продуктов разрушения в понижениях рельефа, в русловой сети, водохранилищах и др. Поэтому в гидрологии эрозионно-аккумулятивные явления рассматриваются как единый процесс. Продукты эрозионной работы транспортируются речными потоками в виде взвешенных и влекомых наносов и в виде растворов. Взвешенные наносы - мелкие минеральные частицы (диаметр не более 3 мм), переносимые водным потоком во взвешенном состоянии. Более крупные наносы перемещаются влечением по дну. В больших реках на долю влекомых наносов приходится в среднем менее 5% (от взвешенных). Сток влекомых наносов малых горных рек, впадающих в моря, составляет 50 - 90 % от стока взвешенных наносов. Размер стока взвешенных наносов больших рек - достоверный критерий интенсивности процесса водной эрозии на определенной части суши. Формирование русла определяют донные наносы, поэтому их часто называют руслоформирующими. Относительно крупные зерна, двигаясь в наиболее насыщенной наносами придонной области, постоянно сталкиваются и касаются друг друга. Движение донных наносов и характеристика речного потока тесно взаимосвязаны. Существующие неровности дна, в том числе шероховатость, образуемая донными наносами, генерируют повышенную турбулентность потока. В свою очередь локальные турбулентные импульсы усиливают неравномерность перемещений наносов и связанные с этим неровности дна. В результате взаимодействия потока с дном в русле рек возникают гряды донных наносов. Гряды постепенно перемещаются вниз по течению. Повороты русла, поперечная циркуляция и другие причины приводят к местным скоплениям наносов. Характер их образования и перемещений определяет тип русла: прямолинейное, извилистое, разбросанное. Русловые процессы. Русловой процесс представляет собой постоянно происходящие изменения морфологического строения русла водотока и поймы, обусловленные действием текучей воды. Русловой процесс является результатом сложного, саморегулирующего взаимодействия между потоком и руслом. Русловые процессы подразделяются на необратимые и обратимые.
Рис.2.2 Типы русловых процессов рек. 1 - ленточно-грядовой тип; 2 - побочневый тип; 3 - ограниченное меандрирование; 4 - свободное меандрирование; 5 - незавершенное меандрирование; 6 - русловая многорукавность; 7 - пойменная многорукавность. Необратимые русловые процессы обусловлены однонаправленным изменением водного режима водотока. Они выражают медленный процесс развития морфологических характеристик реки, относящихся главным образом к продольному профилю реки. К однонаправленным процессам также изменения морфологического строения русла, вызванные воздействием гидротехнических сооружений на речное русло, рассчитанных на длительный срок службы. К обратимым русловым процессам относятся сезонные изменения рельефа дна реки на перекатах и плесах, перемещения песчаных гряд, побочней, осередков, подмывы и намывы берегов, меандрирование, возникновение проток и их отмирание. Обратимые изменения формы дна потока рассматриваются как внешнее проявление движения наносов за счет их переотложения в русле и пойме и поступления в реку с водосборного бассейна. Русловый процесс имеет дискретную структуру, в которой выделяются структурные элементы разных размеров с присущими им закономерностями формирования. К структурным элементам относятся: 1. Отдельные твердые частицы. 2. Микроформы - мелкие песчаные гряды. 3. Мезоформы - средние русловые формы, представляющие собой сравнительно крупные подвижные русловые формы (побочни, осередки, большие гряды). 4. Макроформы - речные излучины. Определенная схема деформации русла и поймы реки, возникающая в результате сочетания особенностей водного режима и стока наносов, обуславливают тип руслового процесса. Различают следующие типы руслового процесса рек: 1. Ленточно-грядовой тип. В русле происходит движение системы гряд, искривленных в плане под влиянием придонных скоростей. Расстояние между вершинами (гребнями) гряд в направлении движения потока, называемое шагом гряд, существенно больше ширины русла. Русло малоизвилистое, движение гряд происходит в основном при повышенной водности. 2. Побочневый тип. По сравнению с предыдущим типом гребни гряд перекошены, направления перекосов смежных гряд чередуются. 3. Ограниченное меандрирование. Для этого типа руслового процесса характерна сравнительно слабая извилистость русла; могут возникать отдельные пойменные массивы. Пойменный массив - участок поймы, ограниченный участками русла реки; в своих крайних точках он соприкасается со склоном долины. Ограниченное меандрирование наблюдается там, где развитие меандр ограниченно склонами долин, уступами древних террас и береговыми валами, сложенными неразмываемыми породами. 4. Свободное меандрирование. Русло реки сильно меандрирует в широкой пойме со староречьями. После прорыва перешейка между смежными излучинами начинает развиваться новая излучина. 5. Незавершенное меандрирование. При этом типе руслового процесса излучина еще не перешла в состояние петли, а спрямляющая протока пропускает еще значительную часть расхода воды реки. 6. Русловая многорукавность. Возникает при больших расходах донных наносов. Появление рукавов сопровождается образованием широкого распластанного русла. Транспортирующая способность потока полностью реализована, и наносы аккумулируются в русле. Донные наносы перемещаются в виде системы больших разобщенных гряд, образующих в межень небольшие острова, между которыми расположены короткие протоки. Такой тип также называют осередковым. 7. Пойменная многорукавность. Этот тип руслового процесса возникает в широких поймах и характеризуется наличием множества рукавов, которые могут рассматриваться как самостоятельные реки, если их протяженность велика. Пойменная многорукавность является в то же время последующим развитием незавершенного меандрирования. Многие русловые процессы на реках представляют собой промежуточные формы перечисленных процессов. Регулятор климата. Вода - гигантский аккумулятор и распределитель основного источника энергии на Земле - энергии Солнца. Водяные пары атмосферы жаркого пояса Земли частично поглощают солнечную энергию, которая затем воздушными массами под влиянием циклонов и антициклоном переносится в области с умеренным и холодным климатом. Здесь водяной пар переходит в жидкую или твердую фазу, отдавая окружающей среде около 2500 Дж тепловой энергии, при конденсации каждого грамма пара. Представьте теперь, какое гигантское количество тепла переносится водяным паром в атмосфере при ежегодном испарении с поверхности океанов и суши 577000 км3 воды. Перенос тепла водяным паром в атмосфере - это только одна из планетарных "обязанностей" воды. Вторая "обязанность" водяных паров - защитить нашу планету от космического холода своеобразным тепловым одеялом. По расчетам известного ученого климатолога М.И. Будыко, при уменьшении содержания водяного пара в атмосфере только вдвое средняя температура поверхности Земли понизилась бы более чем на 5°С (с 14,3 до 9°С). Другим мощным аккумулятором и распределителем солнечной энергии как во времени, так и в пространстве являются океаны и моря. Хорошо известно влияние на климат континентов теплых и холодных океанических течений. Например, для Европы и для всего Северо-запада России исключительным по своему значению является мощное теплое течение Гольфстрим. Оно зарождается в Мексиканском заливе, питается водами Северного и Южного экваториальных течений и по выходе из Флоридского пролива пересекает Атлантический океан с юго-запада на северо-восток. В начале образования ширина Гольфстрима равна 78 км, глубина - 800 м, скорость движения - до 9 км/ч, температура на поверхности воды - до 30°С. Далее, при движении вдоль берегов Северной Америки, его ширина увеличивается до 675 км, скорость течения уменьшается до 3 км/ч. На параллели 38° с. ш., где к Гольфстриму присоединяется Антильское течение, расход (количество воды, протекающее через поперечное сечение в 1 с) достигает 82 млн. м3/с, что в 22 раза больше расхода в месте его зарождения и в 60 раз больше суммарного расхода всех больших и малых рек земного шара. Если бы не было Гольфстрима, вся Скандинавия, подобно Гренландии, была бы покрыта льдом. По расчетам видного ученого С.В. Калесника, около половины переноса тепла из тропических районов в умеренные и полярные широты осуществляется морскими течениями. Аккумуляторами и перераспределителями тепла являются каждое озеро, река, пруд, водохранилище, каждая капля воды. Даже в небольших водоемах суточные колебания температуры поверхностных слоев воды не выходят за пределы нескольких градусов, тогда как перепады температуры окружающего воздуха могут достигать 'десятков градусов. Дождевые и снеговые воды, ежегодно выпадающие на Землю в количестве 577 000 км3, также способствуют созданию более равномерных климатических условий в разных ее частях. Не будь описанных выше процессов, климат многих районов земного шара был бы совершенно непригоден для жизни.
Популярное: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (444)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |