Мегаобучалка Главная | О нас | Обратная связь


Общие сведения о фотохимических реакциях



2020-02-03 196 Обсуждений (0)
Общие сведения о фотохимических реакциях 0.00 из 5.00 0 оценок




Химическая кинетика или кинетика химических реакций — раздел физической химии, изучающий закономерности протекания химических реакций во времени, зависимости этих закономерностей от внешних условий, а также механизмы химических превращений.

Кинетику элементарных фотохимических процессов можно наблюдать с помощью импульсных методов исследования (импульсная флуориметрия, импульсный фотолиз), позволяющих следить за концентрацией возбужденных молекул и короткоживущих промежуточных продуктов.

Исследуя фотохимические реакции при стационарном облучении, мы определяем квантовый выход реакции, который является вероятностью протекания того или иного процесса. Квантовый выход в свою очередь определяется соотношением элементарных констант скорости различных процессов гибели возбуждённых молекул. Говоря о кинетике и кинетических закономерностях фотохимических реакций, мы будем понимать под ними связь квантового выхода реакции с константами скорости элементарных процессов.

Рассмотрим для некоторых простейших реакций связь кинетических параметров системы с квантовым выходом. Для простоты не будем детализировать возможные пути дезактивации возбуждённых молекул.

Пусть продукт фотохимической реакции образуется из синглетного возбуждённого состояния, как показано на рисунке 2.1.

Рисунок 2.1 – Образование продукта фотохимической реакции

где  и  - константы скорости фотохимической реакции и дезактивации возбуждённой молекулы.

Такая упрощённая схема может быть справедлива, в частности, для реакций фотоизомеризации и фотодиссоциации.

В условиях стационарности получаем выражение для квантового выхода образования продукта B:

                  (2.1)

где  - время жизни возбуждённых молекул А.

В общем случае для реакций, протекающих из синглетного возбуждённого состояния, можно записать, что квантовый выход образования продукта реакции есть отношение константы скорости его образования из возбуждённой молекулы исходного соединения к сумме всех констант скорости процессов превращения синглетных возбуждённых молекул:

              (2.2)

Это выражение можно переписать как:

               (2.3)

Часто фотохимические реакции протекают из триплетного состояния возбуждённых молекул. Рассмотрим простейшую схему такой реакции, приведённой на рисунке 2.2:

Рисунок 2.2 – Простейшая схема фотохимической реакции, которая протекает из триплетного состояния возбуждённых молекул

где  и  – константы скорости интеркомбинационной конверсии в триплетное состояние и дезактивации синглетно - возбуждённых молекул;                   и  – константы скорости фотохимической реакции образования продукта из триплетного состояния исходного вещества и дезактивации триплетных молекул.

В этом случае квантовый выход реакции равен:

                      (2.4)

где  - квантовый выход образования триплетных молекул.

При большой длине цепи квантовый выход может оказаться больше единицы. В некоторых случаях он достигает . В общем случае при малых величинах и для цепных реакций величина квантового выхода может быть меньше единицы. В связи с этим вывод о том, что фотохимическая реакция не является цепной при квантовом выходе меньше единицы не верен.

Следует отметить, что для мономолекулярных реакций элементарную константу скорости можно определить по квантовому выходу и времени жизни реагирующего состояния:

                      (2.5)

Для бимолекулярных реакций связь элементарной константы скорости с квантовым выходом более сложная, поскольку в этом случае квантовый выход зависит от концентрации реагентов. При протекании бимолекулярной реакции возбуждённая молекула взаимодействует с реагентом, давая продукт реакции. В зависимости от того, в каком возбуждённом состоянии протекает реакция, мы можем наблюдать изменение стационарной концентрации возбуждённых молекул по изменению интенсивности флуоресценции возбуждённых синглетных молекул или по изменению концентрации триплетных молекул в присутствии реагента.

 Порядок химической реакции определяется по виду уравнения, выражающего зависимость скорости реакции от концентраций реагирующих веществ. Порядок реакции равен сумме показателей степеней концентраций в уравнении, выражающем зависимость скорости реакции от концентраций реагирующих веществ. Реакции разделяются на реакции первого порядка, второго порядка, третьего порядка (реакции более высоких порядков не встречаются). Кроме того, известны так называемые реакции нулевого порядка и некоторые реакции, порядок которых выражается дробным числом.

Количественно скорость химической реакции принято характеризовать изменением концентрации реагирующих веществ в единицу времени. По существу безразлично, концентрацию какого из реагирующих веществ рассматривать. Концентрации исходных веществ будут уменьшаться, а получаемых – возрастать.

Обычно скорость данной химической реакции при постоянных внешних условиях не остаётся постоянной, а изменяется во времени. По мере израсходования исходных веществ, скорость процесса уменьшается. Поэтому численные значения скорости реакций будут различными в зависимости от того, для какого момента или промежутка времени мы рассматриваем изменение концентраций.

Определить истинную скорость υ реакции в данный момент как производную от концентрации по времени можно следующим образом:

                   (2.6)

Константа скорости химической реакции численно равна скорости реакции в условиях, когда концентрации каждого из исходных веществ равны единице.

В отношении кинетики химические реакции разделяют или по признаку молекулярности реакции, или по признаку порядка реакции. Молекулярность реакции определяется числом молекул, одновременным взаимодействием между которыми осуществляется акт химического превращения. По этому признаку реакции разделяются на одномолекулярные ( или мономолекулярные), двухмолекулярные ( или бимолекулярные) и трёхмолекулярные (или тримолекулярные).

К одномолекулярным реакциям относятся некоторые реакции разложения молекул и внутримолекулярных перегруппировок,например газовая реакция:

Для простых одномолекулярных реакций

                     (2.7)

К двухмолекулярным реакциям относятся такие, в которых взаимодействие происходит при столкновении двух молекул различного или одинакового вида:

Для простых двухмолекулярных реакций

                    (2.8)

К трёхмолекулярным реакциям должны быть отнесены реакции, в которых для взаимодействия необходимо одновременное столкновение трёх молекул одного или различных видов. В общем случае уравнение скорости простых трёхмолекулярных реакций имеет вид:

                     (2.9)

Примером трёхмолекулярной реакции может служить указанная выше реакция

Фотохимия изучает химические процессы, идущие при воздействии на вещество света или же сопровождающиеся свечением. Фотохимические реакции называются фотолизом; они могут совершаться в твёрдых, жидких и газообразных телах. Фотохимические реакции возникают под влиянием видимого света, инфракрасных и ультрафиолетовых лучей с длинами волн от 1000 до 10000Å. Энергия этих квантов равна от 120 до 1200 кДж/моль или от 1,2 до 12 эв. Поглощение энергии электромагнитных колебаний усиливает вращательное движение молекул или колебания атомов и атомных групп, составляющих молекулу, и может приводить к возбуждению электронов наружных оболочек атомов и появлению активных частиц. Под действием света протекают многие химические процессы.

Эйнштейн и Штарк на основе представления о квантовой природе света и строения молекул установили закон фотохимической эквивалентности, согласно которому каждая молекула, реагирующая под действием света, поглощает один квант радиации, вызывающей реакцию. Из этого закона следует, что в фоточувствительной системе, находящейся под воздействием излучения с частотой ν, на каждый поглощённый квант излучения hν приходится одна активированная молекула. По закону Эйнштейна и Штарка количество энергии РР, поглощаемой одной грамм – молекулой вещества, определяется по уравнению

                        (2.10)

где  - число Авогадро; - постоянная Планка; - частота; с – скорость света;  - длина волны.

Если в предыдущее уравнение подставить численные значения постоянных ,  и c, то

 

Большими энергией и химической активностью обладают колебания с меньшей длиной волны. В видимом свете наиболее активными являются фиолетовые лучи с λ=4000 Å; для них E=297 кДж/моль. Наименее активна красная часть спектра, где λ=7500 Å; для неё E=159 кДж/моль.

Число молей вещества, которое в единицу времени в единице объёма активируется под действием радиации и может участвовать в первичной фотохимической реакции, в соответствии с первым уравнением можно рассчитать по формуле

                      (2.11)

где E – световая энергия, которая поглощается единицей объёма системы в единицу времени.

При опытной проверке закона фотохимической эквивалентности Эйнштейна – Штарка часто обнаруживается расхождение между числом частиц, которое активируется под действием радиации (числом поглощённых квантов), и числом прореагировавших молекул.

Сложность общего течения фотохимических реакций зависит от последующих вторичных реакций, идущих без воздействия света, в связи с чем для характеристики фотохимических процессов введено понятие квантового выхода γ, который равен отношению числа действительно прореагировавших молекул к числу поглощённых квантов.

Таким образом, скорость фотохимической реакции определяется по уравнению

                   (2.12)

Поглощённую энергию E можно выразить через другие величины. По закону Ламберта – Бера интенсивность I светового потока после прохождения через слой вещества толщиной l равна

                (2.13)

где  - начальная интенсивность светового потока радиации; c – концентрация вещества, поглощающего свет; ε – молекулярный коэффициент поглощения. Отсюда поглощенная энергия E равна

               (2.14)

Подставляя формулы, получим наиболее общее выражение для скорости фотохимической реакции:

              (2.15)

Фотохимические реакции могут быть весьма различными. К ним относятся и реакции фотосинтеза углеводов, осуществляемые растениями под действием солнечного света, и реакции, лежащие в основе фотографического процесса, и явления люминесценции, и выцветание красок и т.д.

Одними из разновидностей фотохимических реакций является фотосинтез и люминесценция.

 

Фотосинтез

Фотосинтез, уникальный физико-химический процесс, осуществляемый на Земле всеми зелеными растениями и некоторыми бактериями и обеспечивающий преобразование электромагнитной энергии солнечных лучей в энергию химических связей различных органических соединений. Основа фотосинтеза — последовательная цепь окислительно-восстановительных реакций, в ходе которых осуществляется перенос электронов от донора — восстановителя (вода, водород) к акцептору — окислителю ( , ацетат) с образованием восстановленных соединений (углеводов) и выделением , если окисляется вода.

Интенсивность, или скорость процесса фотосинтеза в растении зависит от ряда внутренних и внешних факторов. Из внутренних факторов наиболее важное значение имеют структура листа и содержание в нем хлорофилла, скорость накопления продуктов фотосинтеза в хлоропластах, влияние ферментов, а также наличие малых концентраций необходимых неорганических веществ. Внешние параметры – это количество и качество света, попадающего на листья, температура окружающей среды, концентрация углекислоты и кислорода в атмосфере вблизи растения.

Скорость фотосинтеза возрастает линейно, или прямо пропорционально увеличению интенсивности света. По мере дальнейшего увеличения интенсивности света нарастание фотосинтеза становится все менее и менее выраженным, и, наконец, прекращается, когда освещенность достигает определенного уровня 10000 люкс. Дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза. Область стабильной скорости фотосинтеза называется областью светонасыщения. Если нужно увеличить скорость фотосинтеза в этой области, следует изменять не интенсивность света, а какие-либо другие факторы. Интенсивность солнечного света, попадающего в ясный летний день на поверхность земли, во многих местах нашей планеты составляет примерно 100000 люкс. Следовательно, растениям, за исключением тех, которые растут в густых лесах и в тени, падающего солнечного света бывает достаточно для насыщения их фотосинтетической активности (энергия квантов, соответствующих крайним участкам видимого диапазона – фиолетового и красного, различается всего лишь в два раза, и все фотоны этого диапазона в принципе способны осуществить запуск фотосинтеза).

В случае низких интенсивностей света скорость фотосинтеза при 15 и 25°С одинакова. Реакции, протекающие при таких интенсивностях света, которые соответствуют области лимитирования света, подобно истинным фотохимическим реакциям, не чувствительны к температурам. Однако при более высоких интенсивностях скорость фотосинтеза при 25°С гораздо выше, чем при 15°С. Следовательно, в области светового насыщения уровень фотосинтеза зависит не только от поглощения фотонов, но и от других факторов. Большинство растений в умеренном климате хорошо функционируют в интервале температур от 10 до 35°С, наиболее благоприятные условия - это температура около 25°С.

В области лимитирования светом скорость фотосинтеза не изменяется при уменьшении концентрации . Отсюда можно сделать вывод, что  участвует непосредственно в фотохимической реакции. В то же время при более высоких интенсивностях освещения, лежащих за пределами области лимитирования, фотосинтез существенно возрастает при увеличении концентрации . У некоторых зерновых культур фотосинтез линейно возрастал при увеличении концентрации  до 0,5%. (эти измерения проводили в кратковременных опытах, поскольку длительное воздействие высоких концентраций  повреждает листы). Высоких значений скорость фотосинтеза достигает при содержании  около 0,1%. Средняя концентрация углекислоты в атмосфере составляет от 0,03%. Поэтому в обычных условиях растениям не хватает  для того, чтобы с максимальной эффективностью использовать попадающий на них солнечный свет. Если помещенное в замкнутый объем растение освещать светом насыщающей интенсивности, то концентрация  в объеме воздуха будет постепенно уменьшаться и достигнет постоянного уровня, известного под названием «  компенсационного пункта». В этой точке появление  при фотосинтезе уравновешивается выделением  в результате дыхания (темнового и светового). У растений разных видов положения компенсационных пунктов различны.

 

Люминесценция

Люминесценция (от латинского lumen - свет и -escent - суффикс, означающий слабое действие), излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний. Первая часть определения отделяет люминесценцию от теплового равновесного излучения и показывает, что понятие люминесценции применимо только к совокупности атомов (молекул), находящихся в состоянии, близком к равновесному, так как при сильном отклонении от равновесного состояния говорить о тепловом излучении или люминесценции не имеет смысла. Тепловое излучение в видимой области спектра заметно только при температуре тела в несколько сотен или тысяч градусов, в то время как люминесцировать оно может при любой температуре. Люминесценция поэтому часто называется холодным свечением. Вторая часть определения (признак длительности) была введена С. И. Вавиловым, чтобы отделить люминесценцию от различных видов рассеяния света, отражения света, параметрического преобразования света, тормозного излучения и Черенкова - Вавилова излучения. От различных видов рассеяния люминесценция отличается тем, что при её присутствии между поглощением и испусканием происходят промежуточные процессы, длительность которых больше периода световой волны. В результате этого при люминесценции теряется корреляция между фазами колебаний поглощённого и излученного света.

Явления люминесценции - северное сияние, свечение некоторых насекомых, минералов, гниющего дерева - были известны с очень давних времён, однако систематически изучать люминесценцию стали с конца 19 века.

Люминесценция можно классифицировать по типу возбуждения, механизму преобразования энергии, временным характеристикам свечения. По виду возбуждения различают фотолюминесценцию (возбуждение светом); радиолюминесценцию (возбуждение проникающей радиацией), частными случаями которой являются рентгенолюминесценция (возбуждение рентгеновскими лучами), катодолюминесценция (возбуждение электронным пучком), ионолюминесценция (возбуждение ускоренными ионами), альфа-люминесценция (возбуждение альфа-частицами) и так далее; электролюминесценцию (возбуждение электрическим полем); триболюминесценцию (возбуждение механическими деформациями); хемилюминесценцию (возбуждение в результате химических реакций); кандолюминесценцию (возбуждение при рекомбинации радикалов на поверхности).

По длительности свечения различают флуоресценцию (быстро затухающую люминесценция) и фосфоресценцию (длительную люминесценция). Деление это условное, так как нельзя указать строго определённой временной границы: она зависит от временного разрешения регистрирующих приборов.

По механизму элементарных процессов различают резонансную, спонтанную, вынужденную и рекомбинационную люминесценции. Элементарный акт люминесценции состоит из поглощения энергии с переходом атома (молекулы) из основного состояния в возбуждённое состояние, безызлучательного перехода на новый уровень и излучательного перехода в основное состояние. В частном случае излучение может происходить при переходе атома (молекулы) с уровня на уровень. В этом случае люминесценцию называют резонансной. Резонансная люминесценция наблюдается чаще всего в атомных парах (Hg, Cd, Na и других), в некоторых простых молекулах, примесных кристаллах.

Яркость люминесценции кристаллов зависит от наличия в них примесей (так называемых активаторов), энергетические уровни которых могут служить уровнями поглощения, промежуточными или излучательными уровнями. Роль этих уровней могут выполнять также энергетические зоны (валентная и проводимости).

 

 

РАДИАЦИОННАЯ ХИМИЯ

Общие сведения

Радиационная химия как новая научная дисциплина возникла после открытия рентгеновских лучей В. Рентгеном в 1895 году и радиоактивности А. Беккерелем в 1896 году, которые первыми наблюдали радиационные эффекты в фотопластинках. Первые работы по радиационной химии были выполнены в 1899-1903 годах супругами М. Кюри и П. Кюри. В последующие годы наибольшее число исследований было посвящено радиолизу воды и водных растворов, что обусловлено интересом к биологическим эффектам радиации. Мощный стимул радиационная химия получила в связи с развитием ядерной энергетики и производством ядерного оружия. Надо было изучить радиационную стойкость ядерного топлива, различных конструкционных материалов, химические превращения теплоносителей и замедлителей в ядерных реакторах, а также вещества на всех этапах ядерного топливного цикла, начиная с производства и заканчивая переработкой отработанного ядерного топлива, хранением и захоронением радиоактивных отходов. К настоящему времени изучены основные стадии взаимодействия различных видов ионизирующих излучений с веществом (физическая, физико-химическая, химическая), природа промежуточных активных продуктов радиолиза, измерены тысячи констант скоростей реакций в газовой, жидкой и твердой фазах неорганических и органических соединений, накоплены огромные количественные данные о продуктах радиолиза, закономерностях изменений эксплуатационных свойств различных металлических и неметаллических материалов, которые обобщены в многочисленных монографиях и справочниках.

 



2020-02-03 196 Обсуждений (0)
Общие сведения о фотохимических реакциях 0.00 из 5.00 0 оценок









Обсуждение в статье: Общие сведения о фотохимических реакциях

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (196)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)