Мегаобучалка Главная | О нас | Обратная связь


Плотины Нарынского каскада ГЭС.



2020-03-17 285 Обсуждений (0)
Плотины Нарынского каскада ГЭС. 0.00 из 5.00 0 оценок




       Район расположения каскада Нарынских ГЭС является сейсмически активной территорией Центрального Тян-Шаня и сравнительно хорошо изучен в сейсмологическом отношении.

       Каскад Нарынских ГЭС являет собой пример беспрецедентного приближения высоких плотин к сейсмогенерирующим разломам. Глубокая часть Токтогульского водохранилища расположена непосредственно на пересечении Таласо-Ферганского и Наро-Чичканского разломов. В период затопления этого водохранилища было зарегистрировано появление возбуждённой сейсмичности, опасной тем, что остаточные деформации от многочисленных толчков разной силы и направлении накапливаются на протяжении длительного времени.

       Сами плотины (Токтогульская (Рис. 9), Курпсайская, Ташкумырская) являются сооружениями высшей категории капитальности и относятся к объектам повышенного риска (Рис. 3).

       Серьёзному испытанию подверглась сейсмостойкость плотин при Суусамырском землетрясении 19 августа 1992 года с магнитудой М = 7,3 и интенсивностью в эпицентре 9 баллов. Очаг землетрясения находился на расстоянии приблизительно 90 км. от Токтогульской ГЭС. Расчётная интенсивность землетрясения в створе Токтогульской ГЭС составила 7,6 – 7,8 балла, в створе Курпсайской ГЭС – 7,2 – 7,3 балла. Землетрясение было неожиданным и не предварялось никакими прогнозными данными. В дополнение к этому очаг землетрясения оказался расположенным с северной стороны Таласо-Ферганского разлома, которая, по всем ранее проведённым исследованиям, считалась менее активной в сейсмическом отношении, чем южная сторона. Следует отметить, что незадолго до Суусамырского землетрясения, а именно 18 мая 1992 года произошло сильное Кочкоратинское землетрясение (Рис. 1, 7).

       Благодаря тому, что на плотинах Нарынского каскада была установлена контрольно-измерительная аппаратура и приборы, в частности деформометры на контактах «скала-бетон», пьезометры для контроля фильтрационных процессов, удалось оценить реакцию плотин Токтогульской и Курпсайской ГЭС на эти сильные землетрясения.

       Визуальное обследование сооружений Токтогульской ГЭС после Суусамырского землетрясения выявило лишь незначительные нарушения: трещины в перегородках, в стёклах некоторых оконных панелей машзала, нарушения в креплении плафонов светильников, выход из строя нескольких приборов закладной контрольно-измерительной аппаратуры.[24] Судя по показаниям контактных пьезометров, можно сделать вывод о появлении или развитии трещин на контактных поверхностях «скала-бетон», что подтверждается и увеличением фильтрационных расходов. Учитывая обратимость этих явлений, в целом можно констатировать, что Суусамырское землетрясение перенесено без ущерба для надёжности Токтогульской ГЭС и подтвердило правильность инженерных решений по обеспечению сейсмостойкости гидроузла.

       Более ощутимыми оказались последствия для сооружений Курпсайской ГЭС. Прежде всего, это касается контактной зоны сооружения со скальным основанием. Деформометры, установленные в левобережном примыкании плотины на расстоянии 7 – 9 м. от напорной грани, после землетрясения зафиксировали скачок в деформациях от 40 до 100 условных единиц. В течение последующих двух месяцев показания этих приборов изменились незначительно, что указывает на необратимость процессов. Влияние землетрясения сказалось и на изменении фильтрационного режима: в левобережном примыкании плотины изменились пьезометрические уровни, на 13% возрос фильтрационный расход при практически постоянном уровне воды в верхнем бьефе, что означает раскрытие трещин.

       Таким образом, многократные сейсмические нагрузки от слабых возбуждённых и сильных природных землетрясений влияют на напряжённо-деформированное состояние плотин и оснований каскада Нарынских ГЭС. Это влияние необходимо контролировать с помощью имеющихся приборов и дополнительно установленных средств измерений.

       Сейсмогенные динамические воздействия передаются на сооружения через вмещающие массивы горных пород путём дискретных деформаций по трещинам, увеличения взвешивающего противодавления и гидродинамического давления со стороны водохранилища. Следствием этих многократных нагрузок могут быть остаточные деформации в швах и контактных поверхностях, разуплотнение основания с увеличением его водопроницаемости, перераспределение напряжений в теле плотины, что предопределяет возможность изменения запаса устойчивости на сдвиг.

       В целом большие бетонные плотины каскада Нарынских ГЭС успешно выдержали испытание разрушительным землетрясением. Токтогульская плотина обнаружила высокие качества сейсмостойкости, правильность проектных решений.

       Курпсайская плотина благодаря объёмному напряжённому состоянию вполне успешно перенесла динамические нагрузки Суусамырского землетрясения, также подтвердив высокую надёжность. Однако накопление остаточных деформаций от воздействия многочисленных перенесённых землетрясений требует проведения расчетов фактических запасов надёжности этого сооружения.

       В дополнение к этому следует отметить, что в начале 90-х годов на Курпсайской плотине возникли проблемы с глубинным водосбросом. Глубинный водосброс в виде трубы размерами 5 × 7 м. располагается в секции плотины, примыкающей к зданию станции с правой его стороны. В плотине на глубинном водосбросе образовалась промоина длиной 20 м, высотой 2 м. и шириной 1,5 м. Между машинным залом и тоннелем было два метра бетона, из которых две трети было размыто (некачественный бетон), и любой экстренный пропуск воды из чаши водохранилища чреват затоплением машинного зала и выводом из строя генератора. В 1992 году были начаты ремонтные работы на глубинном водосборе.

    Камбаратинские ГЭС.

       Камбаратинские ГЭС №1 и №2, расположенные выше Токтогульского водохранилища (Рис. 3), специально предназначались для работы в энергетическом компенсирующем режиме, восполняющем снижение энергетической отдачи Нижне-Нарынского каскада ГЭС в зимний период года. С вводом этих ГЭС обеспечивается оптимальное использование водных ресурсов, полностью удовлетворяющее интересам, как ирригации, так и энергетики всех стран в бассейне Сыр-Дарьи, что исключает возможность возникновения каких-либо споров о режимах регулирования стока.

       Строительство Камбаратинских ГЭС было начато ещё до распада СССР и в 1991 году практически заморожено из-за отсутствия средств. По ГЭС №2 выполнено 30% объёмов работ, по ГЭС №1 не более 5%. Очевидно, что в настоящее время финансирование строительства этих ГЭС из бюджета Кыргызстана связано с определёнными трудностями. Речь может идти, в основном, о получении долгосрочных иностранных кредитов на льготных условиях.

       Отличительной особенностью Камбаратинских ГЭС является то, что плотины этих ГЭС возводятся путём направленных взрывов. Общий объём взорванной породы для плотины ГЭС-1 в массиве – 259 млн. м³, в разрыхлённом состоянии – 430 млн. м³, уложенный в полезный профиль плотины – 112 млн. м³. Для ГЭС-2 объём взорванного массива – 3,7 млн. м³, навала породы – 5,1 млн. м³, в том числе в проектном профиле плотины – 1,7 млн. м³.

       Следует отметить, что после замораживания строительства этих объектов в 1991 году обстановка на гидроузлах и их сооружениях значительно осложнилась и привела на ГЭС-2 к положению, когда естественное равновесие массива в условиях горного склона оказалось нарушенным подсекающей выемкой котлована водоприёмника, а предусмотренные проектом мероприятия по созданию бетонных опорных конструкций не были возведены в проектном объёме в намечавшиеся сроки в связи с прекращением финансирования строительства.

       Суусамырское землетрясение 1992 года привело к заметным нарушениям и подвижкам отдельных участков верхней зоны борта над сооружениями водоприёмника, осыпям, камнепадам и вывалам крупных обломков по другим объектам гидроузла. В апреле 1996 года произошло обрушение массива правого берега по проводящему каналу над водоприёмником объёмом до 25 тыс. м³, которым был полностью закрыт проход туннеля строительно-эксплуатационного водосброса. В мае 1996 года произошло вторичное обрушение массива. При этом образовавшийся навал породы полностью закрыл входные порталы трёх водотоков. Объём обрушения около 30 тыс. м³.

       Очевидно, что в складывающейся обстановке, и учитывая взрывной способ возведения плотины, при принятии решения о продолжении строительства должен быть предусмотрен комплекс мер по обеспечению безопасности не только строительства, но и эксплуатации Камбаратинской ГЭС-2, и особенно приплотинных участков неустойчивых горных склонов.

       Мероприятия по обеспечению безопасности сооружений ГЭС-2 потребуют не только выделения денежных средств, но и дополнительных инженерно-геологических изысканий, проектных проработок, возможно вплоть до отказа от взрывного способа возведения плотины.

    Заиление водохранилищ.

       Не менее важной проблемой, чем «старение» плотин гидротехнических сооружений, является сокращение объёмов водохранилищ в результате заиления. По данным Технического отчёта Всемирного банка средняя потеря объёма водохранилищ достигает 50 км³ в год или 1% общего объёма. В водохранилища бассейна Сыр-Дарьи ежегодно поступает от 390 тыс. тонн до 32 млн. тонн наносов, включая мелкозём, из них только на долю наносов ледникового происхождения приходится 30 – 50%. Например, в Токтогульское водохранилище ежегодно поступает 6,8 млн. тонн ледниковой муки.

       В Кыргызской Республике в последние годы увеличилось число водохранилищ и бассейнов сезонного, декадного регулирования, заиленных на 50 – 70% или до высот гребня (например, бассейн сезонного регулирования на р. Майлуу-Суу ниже пос. Кок-Таш). Принимая во внимание важное значение проблемы заиления на устойчивость плотин необходимо выполнить комплекс работ по прогнозируемым процессам заиления, анализ предлагаемых контрмер, или направленных на смягчение воздействия заиления на безопасность и сокращение срока службы водохранилищ. В частности, при известном сроке службы водохранилища необходимо дать условия окончания службы плотины, например: будет ли она устойчива при условии заиления до гребня; при каком уровне заиления станет необходимым вывести плотину из эксплуатации, и что затем делать с пропуском паводков и наносов.

       В гидротехнической практике известны различные методы борьбы с заилением, включая регулирование водоразделов, промыв наносов, землечерпательные работы.     



2020-03-17 285 Обсуждений (0)
Плотины Нарынского каскада ГЭС. 0.00 из 5.00 0 оценок









Обсуждение в статье: Плотины Нарынского каскада ГЭС.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (285)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)