Мегаобучалка Главная | О нас | Обратная связь


Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля



2020-03-17 168 Обсуждений (0)
Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля 0.00 из 5.00 0 оценок




ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

 


 

Содержание

 

1. Экспериментальное получение электромагнитных волн

. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля

. Энергия электромагнитных волн

. Давление электромагнитных волн

 


 

. Экспериментальное получение электромагнитных волн

Существование электромагнитных волн было предсказано английским физиком М.Фарадеем в 1832году. Из уравнений Максвелла, сформулированных им в 1865 году, вытекает, что переменные электромагнитные поля распространяются в пространстве со скоростью света. Решающее значение для подтверждения максвелловской теории сыграли опыты немецкого физика Г. Герца (1888г.), в которых было показано, что электрические и магнитные поля действительно распространяются в виде волн, свойства которых описываются уравнениями Максвелла. Уравнения Максвелла позволили установить, что электромагнитные радиоволны, оптическое, рентгеновское и гамма-излучения представляют собой электромагнитные волны с различной длиной волны.

Если где-то в пространстве существуют изменяющиеся со временем электрические заряды и токи, то они будут излучать электромагнитные волны, распространяющиеся в окружающей среде. Источником электромагнитных волн, например, может служить любой электрический колебательный контур или проводник, по которому течет переменный электрический ток, так как для возбуждения электромагнитных волн необходимо создать в пространстве переменные электрическое и магнитное поля.

В рассмотренной ранее лекции колебательном LC- контуре электрическое и магнитное поля сосредоточены между обкладками конденсатора и внутри катушки индуктивности. Такой контур слабо излучает энергию в окружающее пространство и является в этом смысле закрытым колебательным контуром. Излучающая способность такого контура мала и он непригоден для получения электромагнитных волн. В 1886 году Г. Герц использовал для получения электромагнитных волн открытый колебательный контур, в котором он уменьшил число витков катушки и площадь пластин конденсатора, а также раздвинул их и таким образом совершил переход от закрытого колебательного контура к открытому колебательному контуру (вибратор Герца), представляющему собой два стержня, разделенных искровым промежутком. При подаче на вибратор высокого напряжения в промежутке между стержнями проскакивала искра. Она закорачивала промежуток, и в вибраторе возникали затухающие электрические колебания. За время горения искры успевало совершаться большое число колебаний. Если в закрытом колебательном контуре переменное электрическое поле сосредоточено внутри конденсатора пространство, вследствие чего существенно повышается интенсивность электромагнитного излучения. Излучаемые электромагнитные волны, распространяясь в пространстве, переносят энергию, поэтому запасенная в вибраторе энергия с течением времени уменьшается. Пополняется энергия вибратора за счет источника э.д.с., подключаемого к обкладкам конденсатора, а искровой промежуток применяется для того, чтобы увеличить разность потенциалов, до которой первоначально заряжаются обкладки. Помимо электрического поля, в пространстве вокруг вибратора создается вихревое магнитное поле, причем как показали исследования, в каждой точке пространства векторы Е и Н взаимно перпендикулярны, а их значения зависят от координат и времени. Для регистрации электромагнитных волн Г. Герц использовал второй подобный вибратор, называемый резонатором, имеющий такую же частоту собственных колебаний, что и излучающий вибратор, т.е. настроенный в резонанс с вибратором. Когда электромагнитные волны достигали резонатора, то в его зазоре проскакивала электрическая искра.

Г. Герц, используя описанный вибратор, получил электромагнитные волны длиной от 0,6 м до 10 м. С помощью больших металлических зеркал и асфальтовой призмы (размером более 1 м и массой 1200 кг) Герц осуществил отражение и преломление электромагнитных волн. Он обнаружил, что оба эти явления подчиняются законам, установленным ранее в оптике для световых волн. Отразив бегущую плоскую волну с помощью металлического зеркала в обратном направлении, Герц получил стоячую волну и, измерив расстояние между узлами и пучностями, определил длину волны λ. Умножив λ на частоту колебаний вибратора ν, определил скорость распространения электромагнитных волн, которая оказалась к близкой скорости света С. Используя решетку из параллельных друг другу медных проволок расположенных на пути распространения электромагнитных волн Г. Герц доказал поперечность электромагнитных волн.

Опыты Г. Герца были продолжены русским ученым П.Н. Лебедевым, который в 1894 году применил миниатюрный вибратор из тонких платиновых стерженьков и получил более короткие электромагнитные волны с λ = 4 - 6 мм и исследовал прохождение их в кристаллах. При этом было обнаружено двойное преломление волн (двойное лучепреломление).

В 1896 году русский ученый А.С. Попов впервые осуществил с помощью электромагнитных волн передачу сообщения на расстояние около 250 м (были переданы слова «Генрих Герц»). Тем самым было положено основание радиотехнике.

Недостатком вибраторов Герца и Лебедева являлось то, что свободные колебания в них быстро затухали и обладали малой мощностью. Для получения незатухающих колебаний необходимо создать автоколебательную систему, которая обеспечивала бы подачу энергии с частотой, равной частоте собственных колебаний контура. Для этого используют ламповые или транзисторные генераторы.

Простейшим излучателем электромагнитной волны является электрический диполь, представляющий собой отрезок проводника длиной l <<λ, по которому протекает электрический ток I = I0sinωt. На расстояниях r>>λ от электрического диполя, в так называемой волновой зоне, электромагнитные поля «отпочковавшиеся» от диполя никак с ним не связаны и свободно распространяются в пространстве. В однородной изотропной среде они образуют сферическую волну.

Помимо радиотехники электромагнитные волны широко используются в радиолокации для обнаружения и определения положения самолетов, ракет, кораблей, наблюдения за образованием и движением облаков, изучения движения планет и метеоритов и т.д. Электромагнитные волны используются в радиогеодезии для точного определения расстояний между объектами и положение объекта на местности (система ГЛОНАСС). В радиоастрономии электромагнитные волны используются для исследования радиоизлучения небесных объектов. Практически нет таких областей науки и техники, где бы не использовались электромагнитные волны.

 

Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля

На расстоянии r>>λ от электрического диполя или вибратора (волновая зона) электрическое и магнитное поля изменяются в фазе по гармоническому закону и представляют собой сферическую электромагнитную волну, распространяющуюся с фазовой скоростью

 

V = 1/√ε0εμ0μ = С/√εμ,

 

где С = 1/√ ε0μ0 - скорость света в вакууме, ε и μ - диэлектрическая и магнитная проницаемость среды. Так как εμ>1, то скорость распространения электромагнитных волн в веществе всегда меньше, чем в вакууме. При наличии дисперсии среды (зависимости скорости распространения электромагнитных волн от их частоты) скорость переноса энергии, характеризуемая групповой скоростью Vгр, может отличаться от V. В анизотропных средах V зависит также от направления распространения волны.

С дальнейшим увеличением расстояния от вибратора радиус кривизны фронта сферической волны увеличивается, и ее можно считать плоской. Можно показать, что для однородной незаряженной непроводящей (плотность тока j=0) несегнетоэлектрической (ε = const) и неферромагнитной среды (μ = const) из уравнений Максвелла следует, что векторы напряженности Е и Н переменного электромагнитного поля удовлетворяют волновому уравнению:

 

ΔE = (1/V2)∂2E/∂t2,(1)

ΔH = (1/V2)∂2H/∂t2,(2)

 

где Δ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 - оператор Лапласа.

Следствием теории Максвелла является поперечность электромагнитных волн: векторы Е и Н напряженностей электрического и магнитного полей волны взаимно перпендикулярны и лежат в плоскости, перпендикулярной вектору V скорости распространения волны, причем векторы Е, Н и V образуют правовинтовую систему. Уравнениям (1) и (2) удовлетворяют плоские монохроматические электромагнитные волны, описываемые уравнениями

 

Еy = E0cos(ωt - kx + φ),(3)

Hz = H0cos(ωt - kx + φ),(4)

 

где k = ω/V - волновое число.

Векторы Е и Н всегда колеблются в одинаковых фазах, поэтому в уравнениях (3) и (4) начальные фазы φ колебаний в точках с координатой х = 0 одинаковы.

Между амплитудными Е0 и Н0 и мгновенными значениями Е и Н в плоской электромагнитной волне существует взаимосвязь:

 

Е√ε0ε = Н√μ0μ; Е0 √ε0ε = Н0 √μ0μ.(5)


 



2020-03-17 168 Обсуждений (0)
Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля 0.00 из 5.00 0 оценок









Обсуждение в статье: Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (168)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)