Мегаобучалка Главная | О нас | Обратная связь


СТРОЕНИЕ И ОБЩИЕ СВЕДЕНИЯ О ФЕРРОМАГНЕТИКАХ



2020-03-19 319 Обсуждений (0)
СТРОЕНИЕ И ОБЩИЕ СВЕДЕНИЯ О ФЕРРОМАГНЕТИКАХ 0.00 из 5.00 0 оценок




 

Рассмотрим строение атомов ферромагнитных веществ (в изолированном состоянии). Как известно, электроны в атомах занимают различные энергетические уровни, определяемые квантовыми числами. Для наглядности часто пользуются представлением о том, что в атоме имеются более или менее резко разграниченные оболочки, содержащие определенное количество электронов, обращающихся вокруг ядра. Некоторые из оболочек в свою очередь подразделяются на слои или подоболочки. В теории атома принято различные оболочки и подоболочки обозначать индексами 1 s , 2 s , 2 p , 3 s , 3р, 3 d , 4 s и т. д. При этом цифра указывает номер оболочки, а буквой обозначается подоболочка. Электроны в атоме всегда стремятся занять места в оболочках и подоболочках, лежащих ближе к ядру, как более выгодных в энергетическом отношении.

Поэтому при образовании электронных оболочек атома, как правило, сначала заполняются оболочки и подоболочки, расположенные ближе к ядру, а затем уже более удаленные. Однако есть атомы, у которых эта последовательность заполнения мест электронами нарушается, а именно: максимальное число электронов в каждой оболочке не всегда достигается к моменту начала образования следующей оболочки. Тогда в атоме появляются так называемые незаполненные оболочки и подоболочки. Элементы, состоящие из таких атомов, называются переходными; к ним принадлежат, в частности, и элементы, обладающие сильными ферромагнитными свойствами (Fe, Со, Ni, Gd).

Посмотрим теперь, каким образом устроен атом ферромагнитного металла, например железа, и какими магнитными свойствами он обладает, будучи в изолированном состоянии, а также находясь в окружении других атомов железа. Атом железа содержит 26 электронов, которые можно подразделить на четыре оболочки. Первая, самая внутренняя оболочка содержит два электрона (1 s-электроны), вторая — восемь (2 s- и 2 p-электроны), третья - 14 (3 s -, Зр-, З d-электроны) и последняя—два (4 s-электроны). При этом вторая оболочка состоит из двух (s и р), а третья — из трех (s , pud) подоболочек (рис. 1).

 

Рис. 1. Электронные оболочки и подоболочки в атоме железа. Электроны незаполненной подоболочки 3d являются элементарными «магнитиками» железа

 

Третья и четвертая оболочки атома не достроены: при нормальной достройке в первой из них должно было быть 18 электронов, а во второй — 32. Недостающие четыре электрона в третьей оболочке приходятся на подоболочку 3 d . В электронных оболочках некоторые электроны имеют спины, ориентированные в одном направлении, другие — в прямо противоположном; эти направления спинов для последующего удобно обозначить положительными и отрицательными знаками. Рис. 1 показывает, сколько электронов с положительными и отрицательными спинами имеется в каждой оболочке атома железа; мы видим, что первая и вторая оболочки содержат одинаковое число электронов с положительными и отрицательными спинами. Магнитные спиновые моменты электронов в каждой из этих оболочек взаимно компенсируют друг друга так, что последние в магнитном отношении являются нейтральными.

В третьей оболочке первые две подоболочки 3 s и 3 p, как видно из рис. 1, нейтральны в магнитном отношении, тогда как в подоболочке 3d имеется пять электронов с положительным спином и один с отрицательным. Таким образом, четыре электронных спина из подоболочки 3d остаются нескомпенсированными, а, следовательно, весь атом в целом имеет определенный результирующий магнитный момент. Наружные — «валентные» — электроны атома железа, находящиеся в оболочке 4s, в общем случае также могут быть нескомпенсированы. Опыты установили, однако, что эти электроны (вообще очень слабо связанные с атомом) существенно не могут менять магнитного момента атома.

Итак, элементарными «магнитиками» являются не все электроны атома железа, а только небольшая часть их, В атомах никеля в создании магнитного момента атома принимает участие еще меньшее число электронов, чем в железе.

В изолированных атомах железа и никеля орбитальные движения электронов также дают некоторый магнитный момент. Однако если эти атомы становятся частью металла, то магнитное поле не производит заметного действия на электронные орбиты, и они почти не участвуют в создании магнитных моментов атомов. Это доказывают магнетомеханические опыты, в частности опыт Эйнштейна – де Гааза. Причины такого «замораживания» электронных орбит в атомах ферромагнитных металлов в настоящее время еще не совсем ясны.

Экспериментальные исследования показывают, что вещества, имеющие атомы с недостроенными оболочками, всегда обладают своеобразными магнитными свойствами. Согласно таблице Менделеева атомы с незаполненными оболочками имеют элементы переходной группы: Sc, Ti, V, Cr, Mn, Fe, Со, Ni, Pd, Pt; редкоземельные элементы: Gd, Dy, Er, Yb и др. Эти элементы, как правило, всегда обнаруживают сильный парамагнетизм, а некоторые из них—Fe, Ni, Со и Gd — сильный ферромагнетизм.

Бросающейся в глаза особенностью ферромагнитных тел является их способность к сильному намагничиванию, вследствие которой магнитная проницаемость этих тел имеет очень большие значения. У железа, например, магнитная проницаемость достигает значений, которые в тысячи раз превосходят значения у парамагнитных и диамагнитных веществ. Намагничивание ферромагнитных тел было изучено в опытах А. Г. Столетова и других ученых.

Эти опыты показали, сверх того, что, в отличие от парамагнитных и диамагнитных веществ, магнитная проницаемость ферромагнитных веществ сильно зависит от напряженности магнитного поля, при которой производят ее измерение. Так, например, в слабых полях магнитная проницаемость, железа достигает значений 5—6 тысяч, а в сильных полях значения, падают до нескольких сот и ниже.

Для характеристики явления намагничивания вещества вводится величина I , называемая намагниченностью вещества. Намагниченность в СИ определяется формулой:

 

,

 

где μ – относительная магнитная проницаемость вещества,

 - индукция магнитного поля в вакууме,

 - индукция магнитного поля в веществе.

Для пара- и диамагнетиков намагниченность  прямо пропорциональна индукции  магнитного поля в вакууме (рис 1а.).

Для ферромагнитных тел намагниченность является сложной нелинейной функцией . Зависимость  от величины  называется технической кривой намагниченности (рис. 1а.). Кривая указывает на явление магнитного насыщения: начиная с некоторого значения , намагниченность практически остается постоянной, равной  (намагниченность насыщения),  - магнитная постоянная в СИ.

Относительная магнитная проницаемость ферромагнетиков, в отличие от пара- и диамагнетиков имеет весьма большие значения и зависит от индукции магнитного поля, в котором находится вещество. Например, для железа =5000, для пермаллоя (78% Ni и 22% Fe) =100 000.

Изучение зависимости намагниченности железа и других ферромагнитных материалов от напряженности внешнего магнитного поля обнаруживает ряд особенностей этих веществ, имеющих важное практическое значение.

 

Рис. 1а

 

Возьмем кусок ненамагниченного железа, поместим его в магнитное поле и будем измерять намагниченность железа I , постепенно увеличивая напряженность внешнего магнитного поля H. Намагниченность I возрастает сначала резко, затем все медленнее и, наконец, при значениях H около нескольких сот эрстед намагниченность перестает возрастать: все элементарные токи уже ориентированы, железо достигло магнитного насыщения. Графически зависимость величины I ( H ) в описываемом опыте изображается кривой ОА на рис. 1б. Горизонтальная часть этой кривой вблизи А соответствует магнитному насыщению.

Достигнув насыщения, начнем ослаблять внешнее магнитное поле. При этом намагниченность железа уменьшается, но убывание это идет медленнее, чем раньше шло его возрастание. Зависимость между величинами I ( H ) в этом случае изображается ветвью кривой на рис. 1б. Мы видим, таким образом, что одному и тому же значению H могут соответствовать различные значения намагниченности (точки х, х и х" на рис. 1б) в зависимости от того, подходим ли мы к этому значению со стороны малых или со стороны больших значений H. Намагниченность железа зависит, стало быть, не только от того, в каком поле данный кусок находится, но и от предыдущей истории этого куска. Это явление получило название магнитного гистерезиса, т.е отставание изменения величины намагниченности ферромагнитного вещества от изменения внешнего магнитного поля, в котором находится вещество. [1]

Когда внешнее магнитное поле становится равным нулю, железо продолжает сохранять некоторое остаточную намагниченность, величина которого характеризуется отрезком ОС нашего графика. В этом и заключаетсяпричина того, что из железа или стали можно изготовлять постоянные магниты.

Для дальнейшего размагничивания железа нужно приложить внешнее магнитное поле, направленное в противоположную сторону. Ход изменения намагниченности I при возрастании напряженности этого противоположно направленного поля изображается ветвью CDE кривой. Лишь когда напряженность этого поля достигнет определенного значения (в нашем опыте значения, изображаемого отрезком OD ), железо будет полностью размагничено (точка D). Таким образом, величина напряженности размагничивающего поля (отрезок OD) является мерой того, насколько прочно удерживается состояние намагничивания железа. Ее называют коэрцитивной силой. При уменьшении напряженности поля обратного направления и затем при возрастании напряженности поля первоначального направления ход изменения намагничивания железа изображается ветвью кривой EC'A. При новом повторении всего цикла размагничивания, перемагничивания и повторного намагничивания железа в первоначальном направлении форма этой кривой повторяется.

 

Рис. 1б. Кривая намагниченности железа: зависимость намагниченности I от напряженности внешнего магнитного поля H . Стрелки указывают направление процесса

 

(Ветвь ОА изображает ход намагничивания исходного ненамагниченного материала и не повторяется при повторных циклах. Для того чтобы вновь воспроизвести ветвь ОА, необходимо привести материал в первоначальное ненамагниченное состояние. Для этого достаточно, например, сильно нагреть его.)

Из рис. 1б видно, что эта кривая, изображающая ход зависимости намагниченности железа I от напряженности внешнего поля H, имеет вид петли. Ее называют петлёй гистерезиса для данного сорта железа или стали. Форма петли гистерезиса является важнейшей характеристикой магнитных свойств того или иного ферромагнитного материала.

В частности, зная ее, мы можем определить такие важные характеристики этого материала, как его магнитное насыщение, остаточное намагничивание и коэрцитивную силу.

 

Рис. 2. Кривые намагниченности для различных сортов железа и стали:



2020-03-19 319 Обсуждений (0)
СТРОЕНИЕ И ОБЩИЕ СВЕДЕНИЯ О ФЕРРОМАГНЕТИКАХ 0.00 из 5.00 0 оценок









Обсуждение в статье: СТРОЕНИЕ И ОБЩИЕ СВЕДЕНИЯ О ФЕРРОМАГНЕТИКАХ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (319)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)