Мегаобучалка Главная | О нас | Обратная связь


Глава 1. Характеристика сигналов в системах цифровой обработки



2020-03-19 199 Обсуждений (0)
Глава 1. Характеристика сигналов в системах цифровой обработки 0.00 из 5.00 0 оценок




Содержание

Введение

Глава 1. Характеристика сигналов в системах цифровой обработки

Программы для обработки звуковой информации (Редакторы цифрового аудио)

Глава 2. Применение цифровой обработки сигналов (шумоподавление для звука)

Передискретизация

Антиалиасинг изображений

Псевдотонирование изображений

Выравнивание освещенности изображений

Программы для написания музыки

Программы-анализаторы аудио

Специализированные реставраторы аудио

2.8 Трекеры

2.9 Программы для копирования и сжатия цифрового звука с компакт-дисков

Глава 3. Профессиональная обработка звука. Звук и звуковая волна

Программа обработки звука Audacity

Цифровая и аналоговая запись. Аналогово-цифровое преобразование. Микширование

Импульсная и частотная модуляция. Хранение оцифрованного звука

Сэмплирование

Аппаратура

Программное обеспечение

Саундтреки

Заключение

Литература

цифровая обработка шумоподавление запись звук


Введение

 

Программы для работы с аудиоинформацией (звуком) позволяют записывать живой звук и преобразовывать его, изменяя тембр, улучшая качество звучания, добавляя эффекты и т.д. Современные программы-секвенсеры имеют возможность записи не только MIDI, но и звуковых дорожек. Однако для серьезной работы со звуковой информацией, как правило, требуется вызвать внешний аудиоредактор, то есть как раз программу для работы со звуком. В отличие от MIDI-секвенсеров, здесь качество программы определяется не только удобством и функциональностью интерфейса, не только наличием дополнительных утилит, но и собственно алгоритмами обработки. При одних и тех же условиях и параметрах на одном и том же звуковом материале разные программы могут дать совершенно непохожие результаты. Вообще говоря, звуковая информация - вещь «неуловимая»: порой незначительное изменение одного из многих параметров обработки может дать совершенно новый на слух результат. Так что, получив хорошие звуковые результаты, не поленитесь лишний раз записать получившийся файл на диск.

Перспективы развития и использования цифрового аудио видятся авторам статьи очень широкими. Казалось бы, все, что можно было сделать в этой области, уже сделано. Однако это не так. Остается масса еще совсем незатронутых проблем.

Например, область распознавания речи еще очень не развита. Давно уже делались и делаются попытки создать программное обеспечение, способное качественно распознавать речь человека, однако все они пока не приводят к желаемому результату. А ведь долгожданный прорыв в этой области мог бы неимоверно упростить ввод информации в компьютер. Только представьте себе, что вместо набора текста его можно было бы просто надиктовывать, попивая кофе где-нибудь неподалеку от компьютера. Имеется множество программ якобы способных предоставить такую возможность, однако все они не универсальны и сбиваются при незначительном отклонении голоса читающего от заданного тона. Такая работа приносит не столько удобств, сколько огорчений. Еще куда более сложной задачей (вполне возможно, что и неразрешимой вовсе) является распознавание общих звуков, например, звучания скрипки в звуках оркестра или выделение партии рояля. Можно надеяться, что когда-нибудь такое станет возможным, ведь человеческий мозг легко справляется с такими задачами, однако сегодня говорить о хотя бы малейших сдвигах в этой области рано.

В области синтеза звука также есть пространство для изучения. Способов синтеза звука сегодня существует несколько, однако ни один из них не дает возможности синтезировать звук, который нельзя было бы отличить от настоящего. Если, скажем, звуки рояля или тромбона еще более-менее поддаются реализации, до правдоподобного звучания саксофона или электрогитары добиться еще так и не смогли - существует масса нюансов звучания, которые почти невозможно воссоздать искусственно.

Как и графика, компьютерный звук бывает двух основных типов:

Цифровой звук - аналог фотографии, точная цифровая копия введенных извне звуков. Это может быть сделанная с микрофона запись вашего голоса, копия звуковых дорожек с компакт-диска и т. д. Как и фотография, такой звук занимает много места... Впрочем, аппетиты фотографии по сравнению со звуком просто ничтожны! Одна минута цифрового звука, записанного с максимальным качеством, занимает около 10 Мбайт.

Синтезированный звук - точнее, музыка в формате MIDI.

Суть MIDI-технологии можно изложить так: компьютер не просто проигрывает нужную вам мелодию, а синтезирует ее с помощью звуковой карты. MlDI-мелодии - это всего лишь системы команд, управляющие звуковой картой, коды нот, которые она должна "изобразить". Эта технология идеальна для компьютерных композиторов, поскольку позволяет с легкостью изменять любые параметры созданной на компьютере мелодии - заменять инструменты, добавлять или удалять их, изменять темп и даже стиль композиции. И файлы с MIDI-музыкой - крохотные, всего в несколько десятков килобайт. Но и недостатки у MIDI есть - голос в MIDI-файле не запишешь, да и музыка хорошо звучит лишь на очень качественной звуковой карте.

 


Глава 1. Характеристика сигналов в системах цифровой обработки

Цифровая обработка сигналов - преобразование сигналов, представленных в цифровой форме.

Любой непрерывный (аналоговый) сигнал  может быть подвергнут дискретизации <http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F> по времени и квантованию <http://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_(%D0%BE%D0%B1%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D1%81%D0%B8%D0%B3%D0%BD%D0%B0%D0%BB%D0%BE%D0%B2)> по уровню (оцифровке <http://ru.wikipedia.org/wiki/%D0%9E%D1%86%D0%B8%D1%84%D1%80%D0%BE%D0%B2%D0%BA%D0%B0>), то есть представлен в цифровой форме.

Если частота дискретизации <http://ru.wikipedia.org/wiki/%D0%A7%D0%B0%D1%81%D1%82%D0%BE%D1%82%D0%B0_%D0%B4%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D0%B8> сигнала  не меньше, чем удвоенная наивысшая частота в спектре сигнала  (то есть ), то полученный дискретный сигнал эквивалентен сигналу  по методу наименьших квадратов (МНК) (см.: Теорема Котельникова <http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9A%D0%BE%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2%D0%B0>).

При помощи математических алгоритмов  преобразуется в некоторый другой сигнал , имеющий требуемые свойства. Процесс преобразования сигналов называется фильтрацией <http://ru.wikipedia.org/wiki/%D0%A4%D0%B8%D0%BB%D1%8C%D1%82%D1%80%D0%B0%D1%86%D0%B8%D1%8F>, а устройство, выполняющее фильтрацию, называется фильтр <http://ru.wikipedia.org/wiki/%D0%A4%D0%B8%D0%BB%D1%8C%D1%82%D1%80_(%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%B8%D0%BA%D0%B0)>.

Поскольку отсчёты сигналов поступают с постоянной скоростью , фильтр должен успевать обрабатывать текущий отсчет до поступления следующего (чаще - до поступления следующих n отсчётов, где n - задержка фильтра), то есть обрабатывать сигнал в реальном времени <http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D0%B2%D1%80%D0%B5%D0%BC%D1%8F>. Для обработки сигналов (фильтрации) в реальном времени применяют специальные вычислительные устройства - цифровые сигнальные процессоры <http://ru.wikipedia.org/wiki/%D0%A6%D0%B8%D1%84%D1%80%D0%BE%D0%B2%D0%BE%D0%B9_%D1%81%D0%B8%D0%B3%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81%D0%BE%D1%80>.

Всё это полностью применимо не только к непрерывным сигналам, но и к прерывистым, а также к сигналам, записанным на запоминающие устройства. В последнем случае скорость обработки непринципиальна, так как при медленной обработке данные не будут потеряны.

Различают методы обработки сигналов во временной и в частотной области. Эквивалентность частотно-временных преобразований однозначно определяется через преобразование Фурье <http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%A4%D1%83%D1%80%D1%8C%D0%B5>. Цифровая обработка, в отличие от аналоговой, традиционно используемой во многих радиотехнических устройствах, является более дешевым способом достижения результата, обеспечивает более высокую точность, миниатюрность и технологичность устройства, температурную стабильность. При использовании фотокамер для записи видео можно обойтись встроенным микрофоном.

Он обеспечивает минимально возможное качество, достаточное для бытовой съемки.

К основным минусам встроенного микрофона относятся следующие: плохая звукоизоляция от корпуса (что приводит к записи механических шумов от работы механики и работы рук оператора) и отсутствие специального «правильного» оформления входа акустического канала (что приводит к непредсказуемой зависимости чувствительности от направленности), а к плюсам - надежность (его невозможно забыть и трудно сломать, не нужно заботиться о исправности разъемов и источниках питания) и встроенный в камеру интерфейс управления (экономит время и силы при подготовке к съемке).

Характерным для систем обработки изображений является восстановление и улучшение изображений с помощью инверсной свертки, обработка массивов отсчетов с помощью алгоритмов быстрого преобразования Фурье.

При восстановлении трехмерной структуры объектов, получаемых методами проникающего излучения в дефектоскопии и медицинской интраскопии, применяются методы пространственно-частотной фильтрации. Другой класс алгоритмов - преобразование контрастности, выделение контуров, статистическая обработка изображений. Для сжатия информации наиболее эффективны ортогональные преобразования Фурье, Адамара и Уолша.

Требуемая производительность оценивается величинами 100-1000 MIPS, массивы данных - 105-106 отсчетов.

 


Таблица 1 Характеристики сигналов в системах цифровой обработки

Назначение Характеристика Диапазон частот, размерность Требуемое быстродействие Пример, разработчик
Радиолокационные системы Фильтрация сигналов антенны 10 МГц - 10 ГГц, до 214 точек 109 умножений в секунду  
Обработка звуковых сигналов Анализ и синтез речи, сжатие и распознавание 20 кГц (40 кГц), 16 бит 10 MIPS "Напев", ЦНИИ "Агат"
Системы обработки изображений Восстановление и улучшение изображений 105-106 отсчетов 100-1000 MIPS СПФ СМ, ИНЕУМ, ИРЕ АН СССР

 

Ниже приводятся описания двух отечественных систем цифровой обработки сигнала, которые, однако, предваряются небольшим экскурсом в математические и алгоритмические основы обработки последовательностей сигналов.

 



2020-03-19 199 Обсуждений (0)
Глава 1. Характеристика сигналов в системах цифровой обработки 0.00 из 5.00 0 оценок









Обсуждение в статье: Глава 1. Характеристика сигналов в системах цифровой обработки

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (199)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)