Мегаобучалка Главная | О нас | Обратная связь


Регистраторы информации



2020-03-19 178 Обсуждений (0)
Регистраторы информации 0.00 из 5.00 0 оценок




Электреты используют в качестве носителей информации при записи наблюдаемых явлений, результатов измерений и вычислений, переданных по каналам связи сообщений, и т. д. Тип регистрирующих устройств, способы записи и хранения информации зависят от ее назначения: чтение человеком, ввод в вычислительную машину, передача по каналам связи и др. Соответственно этим условиям разработаны следующие виды электретных регистраторов:

· запоминающие устройства

· электрофотография

Запоминающее устройство – блок вычислительной машины или самостоятельное устройство, предназначенное для записи, хранения и воспроизведения главным образом дискретной информации. Электретные запоминающие устройства основаны на локализации распределения зарядов в диэлектрике, которое зависит от формы и полярности заряжающих электродов. Для «прочтения» потенциального рельефа используют стандартные методы измерения заряда электретов.

Электрофотография – фотографический процесс, основанный на проявлении скрытого электрического изображения, образующегося на фотопроводящем слое диэлектрика или высокоомного полупроводника. Различают следующие разновидности электрофотографии: на фотоэлектретах; ксерография; методы, основанные на остаточной проводимости диэлектрика.

Медицинская техника

Огромное применение электретный эффект нашел в медицине. Отметим получившие распространение в клинической практике разработки на основе электретов.

Кровесовместимые материалы. Совместимость с кровью (гемосовместимость) - емкое понятие, включающее широкий комплекс механических и физико-химических аспектов взаимодействия крови и инородных тел. Существует тем не менее главная проблема, которая должна быть решена с помощью кровесовместимых материалов, - предотвращение тромбообразования.

Установление факта электрической заряженности клеток крови послужило основанием для применения в качестве материала, позволяющего контролировать тромбоз, тефлона в электретном состоянии. Проявление электретами антитромбогенных свойств объясняют образованием двойного электрического слоя на границе кровь-электрет.

Область применения кровесовместимых материалов не ограничивается внутренним протезированием (искусственные сосуду, сердечные клапаны и т.д.), но распространяется на изделия медицинской техники, контактирующие с кровью: сердечно-сосудистые катетеры и зонды, артериовенозные шунты и т. д.

Мембраны широко используют в медицинской технике при разделении и очистке биологических сред методом диализа: при исследовании крови, в искусственных почках, легких, печени и т. д. Эффективность электретных мембран обусловлена тем, что их поверхностные свойства можно регулировать независимо от проницаемости.

Перспективной областью использования электретных мембран с регулируемой проницаемостью являются растворимые в организме оболочки для лекарственных препаратов.

Эндопротезы, т.е. протезы внутренних органов, широко используют в травматологии и ортопедии. Эндопротезы из электретов стимулируют остеосинтез, сокращают сроки регенерации костной ткани.

Шовные и перевязочные материалы на основе электретов обладают рядом достоинств, прежде всего гемосовместимостью и большей по сравнению с неэлектретными материалами удельной прочностью. Электретные клеевые пленки способствуют регенерации тканей и препятствуют формированию соединительного рубца.

Фильтры для газов

Электретные фильтры являются являются высокоэффективными устройствами, которые позволяют удалять из загрязненных газов твердые частицы субмикронных размеров, работая без внешних источников питания.

Различают фильтры с жесткими электретными деталями и фильтры с волокнистыми электретными элементами.

Применяются для защиты от промышленной пыли, тумана, в сигаретах для улавливания канцерогенных веществ и т. д.

Источники энергии

Работа электретных источников энергии в большинстве случаев основана на индуцировании переменного тока в постоянном электрическом поле электрета либо на взаимодействии полей электрета и электродов. В немногих случаях поле электрета используют непосредственно. Электреты нашли применение в следующих основных типах источников энергии.

 

Полностью бестоковый «вечный» электромотор
электретно-механического типа со шторками .

Рис. 8

Электретный мотор состоит из корпуса 1, с укрепленными по его краям двумя неподвижными статорными электретами 2,4; их подвижного электретного ротора 3 , дополненного механизмом подъема (8-10); двух экранирующих шторок 5,6. Электретный ротор 3 совершает возвратно-колебательные движения между неподвижными электретами 2,4. На рис.8 показано, что электрет 3 электрическими силами отталкивания от электрета 2 движется к закрытому шторкой неподвижному электрету 4. При этом шторка 5 начинает посредством системы шестерен 8,9,10 опускаться на коромысле 7, и экранируя собою электрет 2. А экранирующая шторка 6 – напротив - поднимается и открывает второй неподвижный электрет 4. И электретный ротор 3 останавливается и начинает вследствие возникновения электрических сил отталкивания электретов 3 и 4, свое повторное возвратное движение к электрету 2. И далее процесс движения ротора 3 автоматически повторяется. По сути, это «вечный» колебательный электродвигатель с использованием потенциальной энергии электрического поля электретов 2,3,4, работающий на электрических силах отталкивания одноименных зарядов, т.е. на силах Кулона.


Комбинированный мотор- генератор поступательно-вращательного типа (рис.9).

Удивительно то, что посредством потенциальной энергии электрического поля можно одновременно получать оба эти вида энергии (и кинетическую энергию движения, например, энергию вращения, и одновременно электроэнергию). Регулирование величины вырабатываемой кинетической энергии и электроэнергии в нагрузке из потенциальной энергии электрического поля достигают изменением величины напряженности исходного или наведенного электрического поля или величины электрического заряда. Рассмотрим такое устройство.

 

Рис. 9

На рис.9 показан простейший многофункциональный "вечный"     мотор-генератор. Он состоит из вращающегося сегментного электретного диска(8,10) и двух электретов 3,4 размещенных в вертикальной колонне 1. Причем подвижный электрет 3 при его отталкивании от неподвижного электрета 4 совершает возвратно-поступательные движения, который обеспечивают через передаточный механизм 9, выполненный по подобию детской игрушки-юлы, непрерывное вращение сегментного электретного диска (8,10). В результате этого вращательного движения электретного диска возникает э.д.с. электрической индукции и генерация электроэнергии. Причем параметры генерируемой электрическим полем подвижных электретов электроэнергии и величину кинетической энергии движения этих тел можно регулировать изменением параметров устройства и параметрами первичного электрического поля. Устройство (рис.9) апробировано на действующих моделях и доказало свою работоспособность.

 

ЗАКЛЮЧЕНИЕ

Приведенный обзор показывает, что номенклатура и сфера приложения электретов в технике ограничены относительно небольшой мощностью генерируемого ими электрического поля и узкими возможностями эффективного применения слабых электрических полей. Поэтому использование электретов для улучшения работоспособности сопряженных материалов, деталей или узлов имеет место преимущественно в приборостроении, радиоэлектронике и практически отсутствует в машиностроении.

Стоит отметить, насколько большое значение имеют электреты в медицине. На основе электретных материалов создаются искусственные сосуды, сердечные клапаны, и т. д., которые могут помочь продлить человеку жизнь.

Изделия из электретов очень компактные, не усложняющие конструкцию машин, приборов и оборудования, что очень удобно и важно.

В последнее время создаются электродвигатели и генераторы на электретах, имеющую большую мощность.

 

Список литературы:

1. Электретные пластмассы: физика и материаловедение/ Под ред. В. А. Белого. – Мн.: Наука и техника,1987. – 231 с.

2. Материалы и элементы электронной техники. Т.2. Активные диэлектрики, магнитные материалы, элементы электронной техники: учебник для студ. высш. учеб. заведений / Под. ред. В.С. Сорокина, Б.Л. Антипова, Н.П. Лазаревой. – М.: Издательский центр «Академия», 2006. – 384 с.

3. Электреты/ Под. ред. О.А. Мяздрикова, В.Е. Манойлова. – М.; Л.: Госкомэнергоиздат, 1962. – 99 с.

4. Электреты/ Под ред. А.Н. Губкина. – М.: Наука,1978. – 192 с.

5. Новые методы извлечения и преобразования скрытой энергии потенциального электрического поля в кинетическую энергию и электроэнергию/ Под ред. В. Д. Дудышева. журн. Свободный взгляд. №7/2005 г.



2020-03-19 178 Обсуждений (0)
Регистраторы информации 0.00 из 5.00 0 оценок









Обсуждение в статье: Регистраторы информации

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (178)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)