Мегаобучалка Главная | О нас | Обратная связь


ПРЕМИЯ ПО ФИЗИОЛОГИИ И МЕДИЦИНЕ 10 страница



2020-03-19 176 Обсуждений (0)
ПРЕМИЯ ПО ФИЗИОЛОГИИ И МЕДИЦИНЕ 10 страница 0.00 из 5.00 0 оценок




В 1939 году Фредерик начинает работы по сооружению ядерного реактора на тяжелой воде, который запатентовал совместно с Ж. Перреном. Из Бельгии было получено 9 тонн оксида урана, из Норвегии — весь мировой запас тяжелой воды — 185 килограммов. Однако в мае 1940 года оккупация Франции фашистами прервала эти работы.

Во время гитлеровской оккупации супруги остались в Париже. Фредерик при полной поддержке жены работал в комитете интеллектуалов-антифашистов, переправил ядерные препараты, научное оборудование и документацию своего института в Англию. Во время фашистской оккупации Франции он укрыл Ланжевена от гестаповцев в надежном месте. В 1941 году Фредерик Жолио-Кюри был среди основателей Национального фронта освобождения Франции. В 1942 году он вступил в Коммунистическую партию Франции, активно поддерживал партизан. В 1944 году, когда гестапо вышло на след Фредерика, он ушел в подполье, а Ирен вместе с детьми бежала в нейтральную Швейцарию.

В послевоенные годы Ирен Жолио-Кюри возглавила кафедру общей физики и радиоактивности в Парижском университете, совмещая этот пост с директорством в Институте радия.

В 1946 году Фредерик Жолио-Кюри был назначен руководителем Комиссариата по атомной энергии Франции. Ирен в 1946–1951 годах помогала мужу в создании и пуске французского атомного реактора «Зоэ». Она принимала также участие в создании Центрального института ядерной физики в Орси.

В 1949 году супруги Жолио-Кюри одними из первых подписали обращение о необходимости созыва Всемирного Совета Мира. Ирен вошла в состав Всемирного Совета Мира, возглавляемого супругом, и принимала участие в многочисленных конференциях и конгрессах сторонников мира.

Эта антивоенная деятельность не понравилась французскому правительству. В 1951 году Ирен было запрещено участвовать в разработке атомного реактора, а годом раньше Фредерик Жолио-Кюри был смещен с поста верховного комиссара по атомной энергии. Однако оба ученых продолжили свои исследования, направленные на благо человечества, и остались верны своим политическим убеждениям.

В пятидесятые годы здоровье Ирен Жолио-Кюри стало резко ухудшаться. Она умерла 17 марта 1956 года от острой лейкемии.

После смерти жены Фредерик взял на себя руководство кафедрой ядерной физики в Парижском университете.

В 1958 году Фредерик Жолио-Кюри заболел вирусным гепатитом и 14 августа скончался. В его память назван один из лунных кратеров.

Ф. Жолио-Кюри писал: «Чисто научные знания приносят мир в наши души и вместе с тем твердую веру в будущее человечества, изгоняя пережитки и страх перед невидимыми силами. Они дают нам веру в светлое завтра, и помимо этого научные знания представляют основной элемент единства мышления всех людей, рассеянных на поверхности нашей планеты».

 

ОТТО ГАН

(1879–1968)

 

«Настоящее воздействие ядерной физики на человеческую жизнь, — сказал в 1962 году М. Борн, — началось в 1938 году, когда в Германии Отто Ган и Фриц Штрассман открыли, что из ядер можно не только выбить отдельные протоны или другие малые частицы, что было уже известно, но и разложить ядерное образование на две примерно одинаковые по величине части».

Лиза Мейтнер отмечала у своего многолетнего ученого-партнера следующие качества: «Радостное желание экспериментировать, острую наблюдательность и дар интуитивно правильно объяснять экспериментальные наблюдения».

Отто Ган родился 8 марта 1879 года во Франкфурте-на-Майне, в семье стекольщика. Мальчик рано увлекся естественнонаучными экспериментами. Его первой лабораторией стала прачечная родительского дома. Затем Отто обучался в Клингерском реальном училище.

Отец мечтал видеть сына архитектором, и Отто поступил по окончании училища в Технический университет на архитектурный факультет. Однако сказалось его увлечение химией и Ган перешел сначала в Марбургский, а через два семестра отправился на один год в Мюнхенский университет, избрав специальностью физическую и неорганическую химию. После возвращения в Марбургский университет Отто работал в лаборатории химика-органика Т. Цинке. Свое образование он ограничил в основном узкой областью, мало интересуясь смежными дисциплинами. «Если бы я мог предугадать мое дальнейшее развитие, — писал он в автобиографии, — то таким дисциплинам, как физика и математика, я уделял бы гораздо больше времени».

В 1901 году он получает докторскую степень. Диссертация Гана относилась к области органической химии. Затем последовал год воинской службы в 81-м пехотном полку.

С осени 1902 года Отто работает ассистентом у Т. Цинке. Ассистентская деятельность у известного химика в течение одного-двух лет была самым лучшим трамплином для желанной профессиональной деятельности в химической промышленности. Несмотря на то что он не был, по его словам, «искусным экспериментатором», эксперименты, которые он подготавливал, на лекциях «проходили вполне удачно», и профессор Цинке был им доволен.

По окончании двухлетней ассистентской работы у Гана появился шанс занять хорошее место на одном из химических заводов. Но требовалось знание английского языка, и для его усовершенствования осенью 1904 года он отправился на несколько месяцев в Англию. Чтобы он мог продолжать образование и по специальности, Цинке дал ему рекомендательное письмо к известному химику сэру У. Рамзаю, профессору Лондонского университета.

Здесь Ган впервые начал исследования, связанные с радиоактивностью. Проводя эксперименты по выделению чистого радия из руды карбоната бария, он получил в 1905 году новый радиоактивный элемент — радиоторий.

По просьбе Гана Рамзай рекомендовал его Э. Резерфорду, работавшему в то время в Монреальском университете в Канаде.

«Для пополнения моих очень скудных знаний по радиоактивности, — писал он в воспоминаниях, — я поехал в Канаду к профессору Резерфорду, к лучшему наставнику в этой новой области. Все здесь было настолько ново, что открытия делать было нетрудно. Три еще недостаточно исследованных ряда радиоактивного распада могли быть заполнены после нахождения следующих активных "элементов"».

Под руководством Резерфорда молодой ученый в 1906 году открыл актиний. Вернувшись в том же году в Берлин, Ган продолжил работы по радиоактивности в Химическом институте университета. Здесь на месте бывшей столярки, служившей ученому лабораторией в течение шести лет, в 1906 – начале 1907 года ему удалось открыть новое вещество — мезоторий.

Тогда же состоялась встреча Гана с Лизой Мейтнер, физиком-экспериментатором, и началась их тридцатилетняя совместная деятельность. Доли участия ученых в исследованиях были примерно одинаковыми. В соответствии со своим образованием Мейтнер разрабатывала больше физическую, а Ган — химическую стороны общих проблем. Поэтому такое сотрудничество было особенно удачным.

«Наряду с моими чисто химическими работами, — говорил позднее Ган, — мы приступили теперь с физиком Лизой Мейтнер к исследованиям лучей радиоактивных веществ, прежде всего так называемых бета- и гамма-лучей. От моей органической химии больше ничего не осталось, завершилась трансмутация органика в исследователя атома».

Через два года они экспериментально доказали явление радиоактивной отдачи. Для дальнейшего развития атомной физики радиоактивная отдача имела особое значение, прежде всего для открытия нейтронов и искусственной радиоактивности.

В конце 1912 года был торжественно открыт институт в Берлин-Далеме. Ган, возглавлявший отделение радиоактивности, получил на первом этаже лишь химическую лабораторию. Это, впрочем, не помешало эффективной деятельности ученого.

Во время Первой мировой войны Ган, как «вице-фельдфебель», был призван на военную службу. По ходатайству известного ученого-химика Ф. Габера его прикомандировали к специальному отделению, что дало ему возможность часто бывать в Берлине по служебным делам, а значит, и снова участвовать в исследованиях.

Совместные исследования с Мейтнер актиния, начатые еще в 1913 году, привели в 1917 году к открытию нового химического элемента, протактиния — единственного радиоактивного вещества в периодической системе, кроме радия, которое можно добывать граммами.

В 1925 году Ган в одной из публичных лекций в Берлинской академии наук предложил рассмотреть вопрос об использовании радиоактивности для исследования истории Земли. Исследуя канадскую слюду, содержащую рубидий, ученый пришел к выводу о возможности нового метода определения возраста земных пород, который имел множество преимуществ. Предложенный им новый метод оказался эффективным и при определении возраста каменных метеоритов.

В 1928 году Гана назначили директором Института химии. Одновременно он продолжал преподавать в университете, хотя его преподавательская деятельность и отходила на задний план в сравнении с исследовательской.

После прихода к власти в 1933 году Гитлера Мейтнер как лицо неарийского происхождения потеряла право преподавания. Ган и Планк пытались, обратившись в министерство, воспрепятствовать осуществлению предполагаемых мер против нее. Но ничего не помогло, ситуация становилась все опаснее, и в июле 1938 года Мейтнер покинула Германию.

В том же году, развивая работы французских ученых И. и Ф. Жолио-Кюри, Ган и его ученик Ф. Штрассман открыли явление деления ядер урана при бомбардировке их медленными нейтронами, т.е. впервые расщепили атомное ядро.

«Заинтригованный казавшимися невероятными результатами французских ученых, Ган решил немедленно проверить их на урановых и ториевых препаратах, — рассказывается в книге К. Манолова и В. Тютюнника «Биография атома». — При облучении соединений урана нейтронами Ган и Штрассман установили, что в продуктах содержится ничтожно малое количество радия. Это можно было доказать, используя испытанный и многократно проверенный на практике метод соосаждения. Урановый препарат растворяли в воде и к раствору добавляли хлорид бария, затем серную кислоту, которая связывала ионы бария в нерастворимый осадок сульфата бария. Радий, образовавшийся при распаде урана, осаждался в виде нерастворимого сульфата вместе с сульфатом бария. Этот осадок можно было легко отделить от раствора, содержащего уран, и после промывания измерить его активность.

Сколько раз они обрабатывали урановые, ториевые и актиниевые реактивы, выделяя из них радиоактивное вещество соосаждением с сульфатом бария. Никто ни разу не усомнился, что это радий. А ведь как просто было проверить! Ган и Штрассман применили к облученному нейтронами препарату урана метод фракционного обогащения. Согласно их прежним исследованиям, в этом препарате образовывалось бета-активное вещество, которое они называли радием-IV. В этот раз его пришлось тщательно переосаждать дополнительно добавленным хлоридом бария, который должен был выполнять роль носителя. К их неописуемому удивлению, обогащения осадка не наблюдалось. Радиоактивность оставалась одинаковой во всех фракциях.

Когда истекло время облучения, ученые начали обработку пробы. Ган добавил к раствору торий-икс и бромид бария в качестве носителя, а Штрассман приступил к фракционному осаждению. Уже две первые фракции показали, что кристаллы бромида бария содержат изотоп радия — торий-икс. Другой радиоактивный изотоп — радий-IV — был распределен во всех фракциях.

Они повторили исследования еще несколько раз. Использовали разные радиоактивные индикаторы, но результат был одним и тем же. Радиоактивное вещество, которое образовывалось при бомбардировке урана медленными нейтронами, оказалось идентичным по свойствам барию, и его не могли отделить от бария никаким химическим способом.

Отто Ган и Фриц Штрассман фактически открыли деление ядра урана. Их статья была датирована 22 декабря 1938 года. Штрассману было в то время 37 лет, а Ган готовился отметить шестидесятилетие…»

Ган писал в конце 1946 года, что гитлеровское правительство оставило его с сотрудниками «в покое». По его мнению, это произошло частично из-за определенного страха, частично из-за тайной мысли, что химики-ядерщики совершат какие-либо открытия, которые помогут установлению немецкого господства во всем мире.

В апреле 1945 года Ган вместе с другими физиками-атомщиками был вывезен в Англию, где он узнал о присуждении ему Нобелевской премии по химии 1944 года. Получить эту премию он смог лишь в декабре 1946 года.

В своей нобелевской лекции он проследил весь путь ядерной физики — от открытия явления радиоактивности Анри Беккерелем до своих собственных работ по расщеплению тяжелых ядер. Присутствовавшие на церемонии почетные гости, естественно, не изучавшие ядерной физики в школе, получили из этой лекции полное представление о величественных и грозных явлениях, происходящих в микромире. Отвечая на вопрос, заданный аудиторией, будет ли энергия атомного ядра поставлена на службу мирным целям или же она продолжит свою военную карьеру, Ган заявил, что «несомненно, ученые мира приложат все усилия для победы первой альтернативы».

С 1946 года Ган жил в Геттингене и до 1960 года являлся президентом Общества Макса Планка. Наряду с М. фон Лауэ Ган был, несомненно, самым решительным антифашистом среди остававшихся в Германии во времена нацизма известных естествоиспытателей.

Уже в 1947 году первооткрыватель расщепления урана закончил доклад о цепной реакции и ее значении пожеланием: «Пусть же в борьбе возможностей надежда на благотворное действие атомной энергии, поставленной на службу человечеству, одержит победу над страхом перед всеуничтожающим действием бомбы!»

Ученый от всего сердца приветствовал Московский договор 1963 года об ограничении испытаний атомного оружия.

Умер Ган 28 июля 1968 года в результате тяжелой травмы позвоночника.

 

ГЕРМАН ШТАУДИНГЕР

(1881–1965)

 

Основополагающие работы в области химии высокомолекулярных соединений принадлежат немецкому ученому Герману Штаудингеру.

Герман Штаудингер родился 23 марта 1881 года в городе Вормс. Его отцом был университетский профессор философии Франц Штаудингер. С детства Герман увлекался ботаникой, поэтому когда в восемнадцать лет окончил гимназию в своем родном городе, то хотел совершенствоваться в этой науке. Однако отец настоял на его занятиях химией, и в 1899 году Герман поступил в Галльский университет на соответствующий факультет.

Постепенно Штаудингер увлекся химией. Окончив университет, в 1903 году он под руководством Форлендера подготовил и защитил в родном университете докторскую диссертацию на тему «Присоединение малонового эфира к ненасыщенным соединениям».

С 1903 по 1907 год Штаудингер работает ассистентом у Тиле в Страсбурге. Здесь же в 1907 году он получил право на занятие должности доцента за исследование свойств кетенов. Эти исследования сделали имя Штаудингеру, что позволило ему в двадцать шесть лет занять должность экстраординарного профессора в Высшей технической школе Карлсруэ.

Штаудингер получил возможность работать в лаборатории известного химика Энглера, который произвел на него большое впечатление. В Карлсруэ молодой ученый опубликовал результаты исследований хлористого оксалила, бутадиена и алифатических углеводородов, изопрена. Что касается последнего, то по заказу фирмы БАСФ Штаудингер в 1910 году изобрел более простой способ получения этого основного компонента каучука.

В 1912 году ученого пригласили в Швейцарскую Высшую техническую школу в Цюрихе, где он должен был заменить известного ученого Р. Вильштеттера. В первое время на новом месте Штаудингер помимо большой преподавательской работы проводил исследования диазосоединений. Продолжая интенсивную работу, несмотря на начавшуюся вскоре мировую войну, химик открыл фосфазин и предпринял, в частности, исследование компонента кофе, определяющего его запах. Он также нашел синтетический заменитель атропину.

Надо сказать, что Штаудингер был ярко выраженным ученым-гуманистом. Он решительно выступал против любой войны. Ученый писал: «На вопрос о войне… можно сегодня ответить прямо, не ссылаясь на то, что война всегда была и что в будущем она никогда не перестанет быть свойственной человеческой природе». Штаудингер подчеркивал, что «длительный мир является насущной задачей всего человечества, которая должна быть решена в наши дни и именно в наши дни».

Исследования Штаудингера после окончания Первой мировой войны были связаны с высокомолекулярными соединениями. К тому времени господствовали взгляды Кекуле, предполагавшего существование «молекулярного притяжения», поскольку «только таким образом можно объяснить существование бесконечного числа сложных тел, описываемых как продукты молекулярного присоединения или молекулы высшего порядка». Ботаник же К. фон Негели предположил, что природные высокомолекулярные вещества, такие как целлюлоза и белок, состоят из низкомолекулярных соединений, связываемых «мицеллярными силами». И, уж конечно, казалось невозможным определить при помощи физико-химических методов молекулярные массы соединений свыше 5000. Такие соединения, как целлюлоза, каучук и крахмал, рассматривались состоящими из относительно малых молекул, связанных между собой особыми ассоциативными силами.

Штаудингеру удалось раскрыть общий принцип построения многих высокомолекулярных природных и искусственных веществ, а также наметить пути их исследования и синтеза. В 1921 году немецкий ученый показал, что каучук и другие коллоидные вещества в действительности являются соединениями, молекулы которых состоят из огромного количества (от тысяч до миллионов) атомов, связанных между собой обычными валентными силами.

В 1922 году Штаудингер завершил, при помощи И. Фричи, гидрирование каучука. При этом они получили гидрокаучук, который оказался растворимым коллоидом. Тогда же Штаудингер предложил для названия подобных молекул термин «макромолекулы».

На съезде естествоиспытателей в 1926 году в Дюссельдорфе Штаудингер изложил свои представления об образовании макромолекул. По мнению ученого, образование таких молекул хорошо объяснялось в соответствии со структурным учением Кекуле о способности атомов углерода к образованию связей между собой и с другими элементами, входящими в состав органических соединений.

Сообщения немецкого химика не только произвели сенсацию, но и вызвали многочисленные возражения. Был среди оппонентов и лауреат Нобелевской премии 1927 года по химии Г. Виланд, который писал Штаудингеру: «Дорогой коллега, оставьте, пожалуйста, Ваши представления о больших молекулах; органических молекул с молекулярным весом свыше 5000 не существует. Если вы хорошо очистите исследуемые Вами продукты, как, например, каучук, тогда он закристаллизуется и обнаружит свой низкомолекулярный характер».

Вскоре у противников Штаудингера появился существенный аргумент: в результате рентгеноструктурных исследований было установлено, что кристаллическая целлюлоза состоит из элементарных ячеек. По представлениям Негели мицеллы соответствуют мельчайшим кристаллам в кристаллических веществах.

Но Штаудингер считал, что в химии высокомолекулярных соединений это понятие следовало интерпретировать иначе: «Под мицеллами следует понимать коллоидные частицы, построенные из многочисленных более мелких молекул, связанных между собой при помощи вандерваальсовых сил».

Заслугой Штаудингера является то, что, введя понятие «макромолекулярные коллоиды», или, иначе, обозначив так класс высокомолекулярных соединений, он осознал и подчеркнул большое теоретическое и практическое значение размера молекул этих веществ.

В своих воспоминаниях Штаудингер писал о том, какими путями он доказывал существование макромолекул. Ему пришлось для этого создать новые методы исследования, которые значительно обогатили существовавшие ранее способы изучения низкомолекулярных веществ, поскольку известные и проверенные на бесчисленных примерах методы исследования низкомолекулярных веществ были совершенно непригодны для обнаружения макромолекул.

«Существование так называемых "макромолекул" Штаудингеру с сотрудниками удалось обосновать путем наблюдений, что "макрорадикалы" переходят неизменными из одного соединения в другое, — отмечается в книге «Биографии великих химиков». — Макромолекулы оказались идентичными с коллоидными частицами, которые, как предполагалось, состоят из "мицелл". Способность к набуханию и вязкость были основными показателями продуктов полимеризации, и Штаудингер сам внес значительный вклад в установление количественных соотношений между вязкостью и молекулярной массой веществ.

Для объяснения строения определенных природных веществ Штаудингер получил синтетические модельные вещества. Это позволило установить существенные закономерности и взаимосвязи, обусловливающие образование макромолекул. Штаудингер изложил результаты своих исследований и обрисовал затронутые при этом проблемы более чем в 400 публикациях. Среди них сообщения об определениях вязкости, обнаружении концевых групп, о превращениях макромолекулярных веществ в их производные, а также полемика с научными противниками, ставившими под сомнение существование макромолекул.

Некоторые представления Штаудингера не подтвердились, как, например, отрицание им вначале ассоциации молекул в разбавленных и концентрированных растворах полимеров. Неправильным оказалось и предположение, что цепеобразные молекулы должны представлять собой довольно жесткие палочки. Но в общем многочисленные основополагающие исследования Штаудингера в области препаративной и физической химии высокомолекулярных соединений принесли ему всеобщее признание».

В 1926 году Штаудингера пригласили занять должность ординарного профессора химии в университете Фрайбурга. До 1950 года ученый возглавлял Институт химии высокомолекулярных соединений этого университета. Он проявил себя не только как выдающийся ученый, но и как прекрасный воспитатель. Под его руководством начинали свой путь в науку такие известные химики, как В. Керн, Р. Зигнер и О. Швейцер.

В 1927 году Штаудингер женился на Магде Войт. Специалист по физиологии растений, она стала ему надежным товарищем в работе. Детей у супругов не было.

В 1953 году, спустя четверть века после осуществленной ученым большой работы, Штаудингер был удостоен Нобелевской премии по химии «за исследования в области химии высокомолекулярных веществ».

В своей нобелевской лекции «Макромолекулярная химия» Штаудингер сказал: «В свете новых знаний в области макромолекулярной химии чудо жизни в ее химическом аспекте открывается в удивительном богатстве и совершенной макромолекулярной архитектуре живой материи».

Широкое международное признание работ Штаудингера выразилось не только в присуждении ученому Нобелевской премии по химии. Он был избран почетным доктором шести различных высших учебных заведений и членом многих научных обществ.

В 1951 году ученый ушел (в отставку) из Фрайбургского университета, став во главе Научно-исследовательского института макромолекулярной химии. Эту должность Штаудингер занимал до 1956 года.

Еще велась полемика относительно правильности теоретических представлений о природе макромолекул, а уже началось практическое использование результатов работ Штаудингера. Вторая половина двадцатого века прошла под знаком быстрого роста производства искусственных высокомолекулярных соединений, что в просторечье зовется «пластиком». Начало этого бума застал и Штаудингер. Он умер во Фрайбурге 8 сентября 1965 года от болезни сердца.

 

ЛАЙНУС ПОЛИНГ

(1901–1994)

 

Дважды лауреат Нобелевской премии в предисловии к своему известному учебнику «Общая химия» для студентов писал: «Химики — это те, кто на самом деле понимает мир».

Как указывается книге «Великие ученые XX века»: «Выдающийся американский химик Лайнус Карл Полинг, или, как его фамилию переводили на русский в пятидесятых годах, Паулинг, родился 28 февраля 1901 года в Портленде. Его отец был фармацевтом, а мать — домохозяйкой. Когда мальчику было девять лет, отец умер и семья оказалась в затруднительном материальном положении.

Лайнус рос задумчивым и замкнутым мальчиком. Он часами мог наблюдать за жизнью насекомых, но особенно привлекали его минералы. Мир цветных камней манил и завораживал. Эта детская страсть к кристаллам иногда врывалась и во взрослую жизнь Полинга: несколько минералов ученый впоследствии изучил исходя из сформулированной им теории.

В тринадцатилетнем возрасте Лайнус впервые посетил настоящую химическую лабораторию. Увиденное там произвело на подростка такое впечатление, что он немедленно сам занялся опытами. "Химическую" посуду Лайнус позаимствовал на кухне у матери, а местом для изысканий избрал свою комнату».

Так и не окончив среднюю школу, в 1917 году Лайнус поступил в Орегонский государственный сельскохозяйственный колледж в городе Корвэллис. Чтобы добыть средства к существованию, студент мыл посуду в ресторане и сортировал бумагу в небольшой типографии.

По окончании колледжа в 1922 году он получил степень бакалавра по специальности «химическая технология». Осенью того же года в качестве аспиранта Калифорнийского технологического института в Пасадене Лайнус приступает к исследованию молекулярной структуры кристаллов с помощью дифракции рентгеновских лучей.

В 1923 году Полинг женится на Эйве Хелен Миллер. Супруги неразлучно прожили долгие и счастливые пятьдесят восемь лет. Эйва Хелен стала для Лайнуса и подругой, и помощницей, и соратницей. Она помогла мужу пройти через все тяжелые испытания.

В 1925 году молодой ученый защитил докторскую диссертацию по результатам исследования в области рентгеноструктурного анализа неорганических соединений. Одновременно он получил и степень бакалавра по математической физике. Полингу также присудили персональную Гугенхеймовскую стипендию, позволившую ему на два года отправиться на учебу в Европу. Здесь он занимался изучением атомной физики и квантовой теории под руководством таких известных ученых, как А. Зоммерфельд в Мюнхене, Э. Шрёдингер в Цюрихе, Н. Бор в Копенгагене и У.Г. Брэгг в Лондоне.

В 1927 году ученый вернулся в Калифорнийский технологический институт в качестве ассистента профессора химии. В этом институте Полинг с 1931 года занимал должность профессора химии, преподавал и вел исследовательскую работу до 1964 года.

Его первые исследования относились к кристаллографии. Полинг занимался расчетом величин ионных радиусов, составил их таблицы, сформулировал некоторые общие правила образования ионных кристаллических структур. За работы в этой области он первым получил премию И. Ленгмюра (1931).

Но главные научные работы Полинга посвящены изучению строения молекул и природы химической связи методами квантовой механики.

Наряду с американским физико-химиком Дж. Слэтером Полинг разработал квантовомеханический метод изучения и описания структуры молекул — метод валентных связей (1931–1934).

В тридцатые годы Полингу удалось объяснить молекулярное строение веществ на основании квантовохимических представлений, опираясь на работу Гейзенберга по расчету атома гелия, где немецкий физик ввел понятие «квантовомеханического резонанса». Вместо классической структурной теории Полинг предложил разработанную им «теорию резонанса».

Термин «резонанс» Полинг использовал как метафору. Теория резонанса исходит из того, что не каждую молекулу можно описать при помощи лишь одной электронной структуры и что в таких случаях «различные возможные электронные структуры находятся друг с другом в состоянии резонанса».

Поэтому химическая связь в подобных соединениях гибридна. Очень важное значение в созданной Полингом теории имеет разработанная им шкала электроотрицательности химических элементов, по которой можно оценивать энергию связи двух элементов и, таким образом, сделать вывод об ее устойчивости и характере. На этом основании ученый смог теоретически объяснить переходы от ионной связи к атомной. Полинг при помощи своей теории истолковал строение многих веществ. Квантовомеханическая теория химической связи — теория резонанса — позволила Полингу объяснить новые экспериментальные данные значительно лучше, чем с помощью классической теории химической связи, недостаточность которой он ощущал.

Ученый высоко оценивал влияние, которое оказала разработка учения о химической связи на развитие химии. Он писал: «Если темпы нынешнего научного прогресса сохранятся, уже у следующего поколения ученых будет такая теория валентности, которая превратит химию в столь же точную и действенную науку, как и теоретическая физика».

Книга Полинга «Природа химической связи», опубликованная в 1939 году, явилась одной из самых известных монографий, посвященных современной структурной химии.

Именно за проведение этих исследований, которые наметили основные пути применения новейших достижений физики и химии в биологии и медицине, Полинг был удостоен звания лауреата Нобелевской премии по химии в 1954 году.

В 1934 году появилась первая работа ученого по биохимии, посвященная магнитным свойствам и кислородному обмену гемоглобина. Далее на основании представлений теории резонанса Полинг исследовал строение молекул белков и изучал способность антител обеспечивать иммунитет.

«С раннего возраста Полинг прекрасно знал, что генетически вовсе не предрасположен к долголетию, — пишет А. Смирнов. — Его отец умер в возрасте 34 лет, мать прожила всего 45 лет. По сути, ученый Лайнус Полинг начал борьбу с самой Природой. Еще в 1940 году ему был поставлен диагноз серьезного почечного заболевания — болезни Брайтона. Тогда это было равносильно смертному приговору, с которым Полинг не желал согласиться. Двенадцать лет после этого он следовал строгой диете, исключившей соль и мясные белки, и победил болезнь. Фактически он пережил собственную смерть более чем на полвека! Видимо, именно в этот период у него окрепла убежденность в возможности найти способ справиться с болезнями и немощной старостью без помощи лекарств.



2020-03-19 176 Обсуждений (0)
ПРЕМИЯ ПО ФИЗИОЛОГИИ И МЕДИЦИНЕ 10 страница 0.00 из 5.00 0 оценок









Обсуждение в статье: ПРЕМИЯ ПО ФИЗИОЛОГИИ И МЕДИЦИНЕ 10 страница

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (176)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)