Мегаобучалка Главная | О нас | Обратная связь


Пространственное распределение галактик



2020-03-17 437 Обсуждений (0)
Пространственное распределение галактик 0.00 из 5.00 0 оценок




 

Обычно галактики встречаются небольшими группами, содержащими по десятку членов, часто объединяющимися в обширные скопления сотен и тысяч галактик. Наша Галактика входит в состав так называемой Местной группы, включающей в себя три гигантские спиральные галактики (наша Галактика, туманность Андромеды и туманность в созвездии Треугольника), а также более 15 карликовых эллиптических и неправильных галактик, крупнейшими из которых являются Магеллановы Облака. В среднем размеры скоплений галактик составляют около 3 Мпс. В отдельных случаях диаметр их может превышать 10-20 Мпс. Они делятся на рассеянные (неправильные) и сферические (правильные) скопления. Рассеянные скопления не обладают правильной формой и имеют нерезкие очертания. Галактики в них весьма слабо концентрируются к центру. Примером гигантского рассеянного скопления может служить ближайшее к нам скопление галактик в созвездии Девы. На небе оно занимает примерно 120 кв. градусов и содержит несколько тысяч преимущественно спиральных галактик. Расстояние до центра этого скопления составляет около 11 Мпс. Сферические скопления галактик более компактны, чем рассеянные, и обладают сферической симметрией. Их члены заметно концентрируются к центру. Примером сферического скопления является скопление галактик в созвездии Волос Вероники, содержащее очень много эллиптических и линзообразных галактик (рис. 242). Его диаметр составляет почти 12 градусов. В нем содержатся около 30 000 галактик ярче 19 фотографической звездной величины. Расстояние до центра скопления составляет около 70 Мпс. С многими богатыми скоплениями галактик связаны мощные протяженные источники рентгеновского излучения, природа которого, скорее всего, связана с наличием горячего межгалактического газа, подобного коронам отдельных галактик.

Есть основания полагать, что скопления галактик в свою очередь также распределены неравномерно. Согласно некоторым исследованиям, окружающие нас скопления и группы галактик образуют грандиозную систему - Сверхгалактику. Отдельные галактики при этом, по-видимому, концентрируются к некоторой плоскости, которую можно называть экваториальной плоскостью Сверхгалактики. Только что рассмотренное скопление галактик в созвездии Девы находится в центре такой гигантской системы. Масса нашей Сверхгалактики должна составлять около1015 масс Солнца, а ее диаметр порядка 50 Мпс. Однако реальность существования подобных скоплений галактик второго порядка в настоящее время остается спорной. Если они и существуют, то лишь как слабо выраженная неоднородность распределения галактик во Вселенной, так как расстояния между ними немногим могут превышать их размеры. Об эволюции галактик Соотношение общего количества звездного и межзвездного вещества в Галактике со временем изменяется, поскольку из межзвездной диффузной материи образуются звезды, а они в конце своего эволюционного пути возвращают в межзвездное пространство только часть вещества; некоторая его часть остается в белых карликах. Таким образом, количество межзвездного вещества в нашей Галактике должно со временем убывать. То же самое должно происходить и в других галактиках. Перерабатываясь в звездных недрах, вещество Галактики постепенно изменяет химический состав, обогащаясь гелием и тяжелыми элементами. Предполагается, что Галактика образовалась из газового облака, которое состояло главным образом из водорода. Возможно даже, что, кроме водорода, оно никаких других элементов и не содержало. Гелий и тяжелые элементы образовались в таком случае в результате термоядерных реакций внутри звезд. Образование тяжелых элементов начинается с тройной гелиевой реакции ЗНе4 ® C 12, затем С12 соединяется с a-частицами, протонами и нейтронами, продукты этих реакций подвергаются дальнейшим преобразованиям, и так появляются все более и более сложные ядра. Однако образование самых тяжелых ядер, таких как уран и торий, постепенным наращиванием объяснить нельзя. При этом неизбежно пришлось бы пройти через стадию неустойчивых радиоактивных изотопов, которые распадутся быстрее, чем успеют захватить следующий нуклон. Поэтому предполагается, что самые тяжелые элементы, стоящие в конце менделеевской таблицы, образуются при вспышках сверхновых звезд. Вспышка сверхновой представляет собой результат быстрого сжатия звезды. При этом температура катастрофически возрастает, в сжимающейся атмосфере идут цепные термоядерные реакции и возникают мощные потоки нейтронов. Интенсивность нейтронных потоков может быть столь велика, что промежуточные неустойчивые ядра не успевают разрушиться. Прежде чем это произойдет, они захватывают новые нейтроны и становятся устойчивыми. Как уже упоминалось, содержание тяжелых элементов в звездах сферической составляющей много меньше, чем в звездах плоской подсистемы. Это объясняется, по-видимому, тем, что звезды сферической составляющей образовались в самой начальной стадии эволюции Галактики, когда межзвездный газ был еще беден тяжелыми элементами. В то время межзвездный газ представлял собой почти сферическое облако, концентрация которого увеличивалась к центру. Такое же распределение сохранили и звезды сферической составляющей, образовавшиеся в эту эпоху. В результате столкновений облаков межзвездного газа их скорость постепенно уменьшалась, кинетическая энергия переходила в тепловую и менялась общая форма и размеры газового облака. Расчеты показывают, что в случае быстрого вращения такое облако должно было принять форму сплющенного диска, что мы и наблюдаем в нашей Галактике. Звезды, образовавшиеся в более позднее время, образуют поэтому плоскую подсистему. К тому времени, как межзвездный газ сформировался в плоский диск, он прошел переработку в звездных недрах, содержание тяжелых элементов значительно увеличилось и звезды плоской составляющей поэтому тоже богаты тяжелыми элементами. Часто звезды плоской составляющей называют звездами второго поколения, а звезды сферической составляющей - звездами первого поколения, чтобы подчеркнуть тот факт, что звезды плоской составляющей образовались из вещества, уже побывавшего в звездных недрах. Аналогичным образом протекает, вероятно, эволюция и других спиральных галактик. Форма спиральных рукавов, в которых сосредоточен межзвездный газ, по-видимому, определяется направлением силовых линий общего галактического магнитного поля. Упругость магнитного поля, к которому "приклеен" межзвездный газ, ограничивает уплощение газового диска. Если бы на межзвездный газ действовала только сила тяжести, его сжатие продолжалось бы неограниченно. При этом вследствие большой плотности он быстро сконденсировался бы в звезды и практически исчез бы. Есть основания полагать, что скорость образования звезд приблизительно пропорциональна квадрату плотности межзвездного газа.

Если галактика вращается медленно, то межзвездный газ собирается под действием силы тяжести в центре. По-видимому, в таких галактиках магнитное поле слабее и меньше препятствует сжатию межзвездного газа, чем в быстро вращающихся. Большая плотность межзвездного газа в центральной области приводит к тому, что он быстро расходуется, превращаясь в звезды. В результате медленно вращающиеся галактики должны иметь приблизительно сферическую форму с резким увеличением звездной плотности в центре. Мы знаем, что как раз такие характеристики имеют эллиптические галактики. По-видимому, причина их отличия от спиральных заключается в более медленном вращении. Из сказанного выше понятно также, почему в эллиптических галактиках мало звезд ранних классов и мало межзвездного газа.

Таким образом, эволюцию галактик можно проследить начиная со стадии газового облака приблизительно сферической формы. Облако состоит из водорода, оно неоднородно. Отдельные сгустки газа, двигаясь, сталкиваются друг с другом, - потеря кинетической энергии приводит к сжатию облака. Если оно вращается быстро, получается спиральная галактика, если медленно - эллиптическая. Естественно задать вопрос, почему вещество во Вселенной разбилось на отдельные газовые облака, ставшие потом галактиками, почему мы наблюдаем разлет этих галактик, в какой форме находилась материя во Вселенной до того, как образовались галактики.

 

Расширение Вселенной

 

Вселенная

Звездное небо над головой долгое время было для человека символом вечности. Лишь в Новое время люди осознали, что "неподвижные" звезды на самом деле движутся, причем с огромными скоростями. В ХХ в. человечество свыклось с еще более странным фактом: расстояния между звездными системами - галактиками, не связанными друг с другом силами тяготения, постоянно увеличиваются. И дело здесь не в природе галактик: сама Вселенная расширяется! Естествознанию пришлось расстаться с одним из своих основополагающих принципов: все вещи меняются в этом мире, но мир в целом всегда одинаков. Это можно считать важнейшим научным событием ХХ в. Все началось, когда Альберт Эйнштейн создал общую теорию относительности. В ее уроках описаны фундаментальные свойства материи, пространства и времени. ("относительный" по-латыни звучит как relativus, поэтому теории основанные на теории относительности Эйнштейна, называются релятивистскими). Применив свою теорию ко Вселенной как целой системе, Эйнштейн обнаружил, что такого решения, которому соответствовала бы не меняющаяся со временем Вселенная, не получается. Этот не удовлетворил великого ученого. Чтобы добиться стационарного решения своих уравнений, Эйнштейн ввел в них дополнительное слагаемое - так называемый ламбда-член. Однако до сих пор никто не смог найти какого-либо физического обоснования этого дополнительного члена. В начале 20-х годов советский математик А. А. Фридман решил для Вселенной уравнения общей теории относительности, не накладывая условия стационарности. Он доказал, что могут существовать два состояния для Вселенной: расширяющийся мир и сжимающийся мир. Полученные Фридманом уравнения используют для описания эволюции Вселенной и в настоящее время. Все эти теоретические рассуждения никак не связывались учеными с реальным миром, пока в 1929 г. американский астроном Эдвин Хаббл не подтвердил расширения видимой части Вселенной. Он использовал при этом эффект Доплера. Линии в спектре движущегося источника смещаются на величину, пропорциональную скорости его приближения или удаления, поэтому скорость галактики всегда можно вычислить по изменению положения ее спектральных линий. Еще во втором десятилетии ХХ в. американский астроном Весто Слайфер, исследовав спектры нескольких галактик, заметил, что у большинства из них спектральные линии смещены в красную сторону. Это означало, что они удаляются от нашей Галактики со скоростями в сотни километров в секунду. Хаббл определил расстояние до небольшого числа галактик и их скорости. Из его наблюдений следовало, что чем дальше находится галактика, тем с большей скоростью она от нас удаляется. Закон, по которому скорость удаления пропорциональна расстоянию, получил название закона Хаббла. Означает ли это, что наша Галактика является центром, от которого и идет расширение? С точки зрения астрономов, такое невозможно. Наблюдатель в любой точке Вселенной должен увидеть ту же картину: все галактики имели бы красные смещения, пропорциональные расстояния до них. Само пространство как бы раздувается. Вселенная расширяется, но центр расширения отсутствует: из любого места картина расширения будет представляться той же самой. Если на воздушном шарике нарисовать галактики, и начать надувать его, то расстояния между ними будут возрастать, причем тем быстрее, чем дальше они расположены друг от друга и разница лишь в том, что нарисованные галактики сами увеличиваются в размерах, реальные же звездные системы повсюду во Вселенной сохраняют свой объем. Это объясняется тем, что составляющие их звезды связаны между собой силами гравитации. Факт постоянного расширения Вселенной установлен твердо. Самые далекие из известных галактик и квазаров имеют такое большое красное смещение, что длины волн всех линий в спектрах оказываются больше, чем у близких источников в 5 - 6 раз! Но если Вселенная расширяется, то сегодня мы видим ее не такой, какой она была в прошлом. Миллиарды лет назад галактики располагались значительно ближе друг к другу. Еще раньше отдельных галактик просто не могло существовать, а еще ближе к началу расширения не могло быть даже звезд. Эта эпоха - начало расширения Вселенной - удалена от нас на 12 - 15 млрд лет. Оценки возраста галактик пока слишком приближенны, чтобы уточнить эти цифры. Но надежно установлено, что самые старые звезды различных галактик имеют примерно одинаковый возраст. Следовательно, большинство звездных систем возникло в тот период, когда плотность вещества во Вселенной была значительно выше современной. На начальной стадии все существо Вселенной имело настолько высокую плотность, что ее даже невозможно было себе представить. Идею о расширении Вселенной из сверхплотного состояния ввел в 1927 г. бельгийский астроном Жорж Леметр, а предложение, что первоначальное вещество было очень горячим, впервые высказал Георгий Антонович Гамов в 1946 г. Впоследствии эту гипотезу подтвердило открытие так называемого реликтового излучения. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим Взрывом. Но остается множество вопросов. Что привело к образованию ныне наблюдаемой Вселенной, к началу Взрыва? Почему пространство имеет три измерения, а время одно? Как в стремительно расширяющейся Вселенной смогли появиться стационарные объекты - звезды и галактики? Что было до начала Большого Взрыва? Над поисками ответов на эти и другие вопросы работают современные астрономы и физики.

Модель горячей вселенной. Эволюция Вселенной

Американский физик Георгий Антонович Гамов в 1946 году заложил основы одной из фундаментальных концепций современной космологии - модели "горячей Вселенной". В этой модели основное внимание переносится на состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии, когда состояние было необычным. С построением моделей "горячей Вселенной" в космологии наряду с законами тяготения активно применяются законы термодинамики, данные ядерной физики и физики элементарных частиц. Возникает релятивистская астрофизика. Модель горячей Вселенной получила эмпирическое подтверждение в 1965 году в открытии реликтового излучения американскими учеными Пензиасом и Уилсоном. Реликтовое излучение - одна из составляющих общего фона космического электромагнитного излучения. Реликтовое излучение равномерно распределено по небесной сфере и по интенсивности соответствует тепловому излучению абсолютно черного тела при температур около 3К. Согласно модели горячей Вселенной, плазма и электромагнитное излучение на ранних стадиях расширения Вселенной обладали высокой плотностью и температурой. В ходе космологического расширения Вселенной эта температура падала. При достижении температуры около 4000 К произошла рекомбинация протонов и электронов, после чего равновесие образовавшегося вещества (водорода и гелия) с излучением нарушилось - кванты излучения уже не обладали необходимой для ионизации вещества энергией и проходили через него как через прозрачную среду. Температура обособившегося излучения продолжала снижаться и к нашей эпохе составила около 3К. Таким образом, это излучение сохранилось до наших дней как реликт от эпохи рекомбинации и образования нейтральных атомов водорода и гелия. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим взрывом. В основе современной космологии лежат представления об однородности и изотропности Вселенной: во Вселенной нет каких-либо выделенных точек и направлений, т.е. все точки и направления равноправны. Это утверждение об однородности и изотропности Вселенной часто называют космологическим постулатом. В теории однородной изотропной Вселенной оказываются возможными две модели Вселенной: открытая и замкнутая. В открытой модели кривизна трехмерного пространства отрицательна или (в пределе) равна нулю, Вселенная бесконечна; в такой модели расстояния между скоплениями галактик со временем неограниченно возрастают. В замкнутой модели кривизна пространства положительна, Вселенная конечна (но так же безгранична, как и в открытой модели); в такой модели расширение со временем сменяется сжатием.

На основании имеющихся наблюдательных данных нельзя сделать никакого выбора между открытой и замкнутой моделями. Эта неопределнность никак не сказывается на общем характере прошлого и современного расширения, но влияет на возраст Вселенной (длительность расширения) - величину не достаточно определенную по данным наблюдений. В моделях однородной изотропной Вселенной выделяется ее особое начальное состояние - сингулярность. Это состояние характеризуется огромной плотностью массы и кривизной пространства. С сингулярности начинается взрывное, замедляющееся со временем расширение. Значение постоянной Хаббла (вернее, параметра Хаббла) определяет время, истекшее с начала расширения Вселенной, которое сейчас оценивается в 10-20 млрд. лет. Современная космология рисует картину Вселенной вблизи сингулярности. В условиях очень высокой температуры вблизи сингулярности не могли существовать не только молекулы и атомы, но даже и атомные ядра; существовала лишь равновесная смесь разных элементарных частиц. Уравнения современной космологии позволяют найти закон расширения однородной и изотропной Вселенной и описать изменение ее физических параметров в процессе расширения. Из этих уравнений следует, что начальные высокие плотность и температура быстро падали. Общие законы физики надежно проверены при ядерных плотностях, а такую плотность Вселенная имеет спустя 10-4с от начала расширения. Следовательно, с этого времени от состояния сингулярности физические свойства эволюционирующей Вселенной вполне поддаются изучению (в ряде случаев эту границу отодвигают непосредственно к сингулярности). В последние десятилетия развитие космологии и физики элементарных частиц позволило теоретически рассмотреть самую начальную сверхплотную стадию расширения Вселенной, которая завершилась уже к моменту t около 10-36 с. Эту стадию расширения Вселенной назвали инфляционной. На этой стадии, когда температура была невероятно высока (больше 1028 К), Вселенная расширялась с ускорением, а энергия в единице объема оставалась постоянной. До момента рекомбинации, который наступил примерно через миллион лет после начала расширения, Вселенная была непрозрачной для квантов света. Поэтому с помощью электромагнитного излучения нельзя заглянуть в эпоху, предшествующую рекомбинации. На сегодняшний день это можно сделать с помощью теоретических моделей.

Вначале расширения Вселенной ее температура была столь высока, что энергии фотонов хватало для рождения пар всех известных частиц и античастиц. При температуре 1013 К во Вселенной рождались и гибли (аннигилировали) пары различных частиц и их античастиц. При понижении температуры до 5х1012 К почти все протоны и нейтроны аннигилировали, превратившись в кванты излучения; остались только те из них, для которых "не хватило" античастиц. Фотоны, энергия которых к этому времени стала меньше, уже не могли порождать частицы и античастицы. Наблюдения реликтового фона показали, что первоначальный избыток частиц по сравнению с античастицами составлял ничтожную долю (одну миллиардную) от их общего числа. Именно из этих "избыточных" протонов и нейтронов в основном состоит вещество современной наблюдаемой Вселенной. При температуре 2х1010 К с веществом перестали взаимодействовать нейтрино - от этого момента должен был остаться "реликтовый фон нейтрино", обнаружить который, возможно, удастся в будущем. Спустя несколько секунд после начала расширения Вселенной началась эпоха, когда образовались ядра дейтерия, гелия, лития и бериллия - эпоха первичного нуклеосинтеза. Продолжалась эта эпоха приблизительно 3 минуты. Ее результатом в основном стало образование ядер гелия. Остальные элементы, более тяжелые, чем гелий, составили ничтожно малую часть вещества. Определение химического состава (особенно содержание гелия, дейтерия и лития) самых старых звезд и межзвездной среды молодых галактик является одним из способов проверки выводов теории горячей Вселенной. После эпохи нуклеосинтеза (t около 3 мин.) и до эпохи рекомбинации (t около 106 лет) происходило спокойное расширение и остывание Вселенной.

В статье Новый вариант большого взрыва и новый 1000 вопрос рассматривается очень красивая и интересное, но по своей сущности весьма фантастическая идея.

 



2020-03-17 437 Обсуждений (0)
Пространственное распределение галактик 0.00 из 5.00 0 оценок









Обсуждение в статье: Пространственное распределение галактик

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (437)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)