Плоскость и прямая в пространстве (№17,36)
Всякое уравнение первой степени относительно координат x, y, z Ax + By + Cz +D = 0 (3.1) задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости. Вектор n (A, B, C ), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0. Особые случаи уравнения (3.1): 1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат. 2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz. 3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz. 4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz. Уравнения координатных плоскостей: x = 0, y = 0, z = 0. Прямая в пространстве может быть задана: 1) как линия пересечения двух плоскостей,т.е. системой уравнений: A 1 x + B 1 y + C 1 z + D 1 = 0, A 2 x + B 2 y + C 2 z + D 2 = 0; (3.2) 2) двумя своими точками M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ), тогда прямая, через них проходящая, задается уравнениями: 3) точкой M 1 (x 1, y 1, z 1 ), ей принадлежащей, и вектором a(m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями: Уравнения (3.4) называются каноническими уравнениями прямой. Вектор a называется направляющим вектором прямой. Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t: x = x 1 + mt , y = y 1 + nt , z = z 1 + р t . (3.5) Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой в проекциях или кприведенным уравнениям прямой : x = mz + a, y = nz + b. (3.6) От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения: От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n= [ n 1, n 2 ], где n 1 (A 1, B 1, C 1 ) и n 2 (A 2, B 2, C 2 ) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система равносильна системе Система Пример 1.15. Cоставьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости. Решение. По условию задачи вектор ОА (1,-1,3) является нормальным вектором плоскости, тогда ее уравнение можно записать в виде Пример 1.16. Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью 2x+y- Решение. Плоскость, проходящая через ось Oz, задается уравнением Ax+By=0, где А и В одновременно не обращаются в нуль. Пусть В не Решая квадратное уравнение 3m 2 + 8m - 3 = 0, находим его корни Пример 1.17.Составьте канонические уравнения прямой: Решение. Канонические уравнения прямой имеют вид: где m, n, р - координаты направляющего вектора прямой, x 1, y 1, z 1 - координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, x=0) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть x=0, тогда y + z = 0, 3y - 2z+ 5 = 0, откуда y=-1, z=1. Координаты точки М(x 1, y 1, z 1 ), принадлежащей данной прямой, мы нашли: M (0,-1,1). Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей n 1 (5,1,1) и n 2 (2,3,-2). Тогда Канонические уравнения прямой имеют вид: x/(-5) = (y + 1)/12 = Пример 1.18. В пучке, определяемом плоскостями 2х-у+5z-3=0 и х+у+2z+1=0, найти две перпендикулярные плоскости, одна из которых проходит через точку М(1,0,1). Решение. Уравнение пучка, определяемого данными плоскостями, имеет вид u(2х-у+5z-3) + v(х+у+2z+1)=0, где u и v не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом: (2u +v)x + (- u + v)y + (5u +2v)z - 3u + v = 0. Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим: (2u+v) × 1 + ( -u + v) × 0 + (5u + 2v ) × 1 -3u + v =0, или v = - u. Тогда уравнение плоскости, содержащей M, найдем, подставив v = - u в уравнение пучка: u(2x-y +5z - 3) - u (x + y +2z +1) = 0. Т.к. u ¹ 0 ( иначе v=0, а это противоречит определению пучка ), то имеем уравнение плоскости x-2y+3z-4=0. Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей: (2u+ v) × 1 + (v - u) × (-2) + (5u +2v) × 3 = 0, или v = - 19/5u. Значит, уравнение второй плоскости имеет вид: u(2x -y+5z - 3) - 19/5 u(x + y +2z +1) = 0 или 9x +24y + 13z + 34 = 0.
Макс Спикин 18) Записать условие принадлежности двух прямых одной плоскости (3б.) Две прямые в пространстве могут пересекаться, быть параллельными и скрещиваться. Если две прямые пересекаются или параллельны, то они лежат в одной плоскости. Пусть две прямые заданы каноническими уравнениями:
где
37) Перечислить основные виды уравнений прямой на плоскости. Указать геометрическое значение входящих в них параметров (5б.)
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (677)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |