Мегаобучалка Главная | О нас | Обратная связь

Сварка электронным лучем




Способы электронно-лучевой сварки.

Источником нагрева при этом методе служит концентрированный поток электронов. Зона нагрева электронным лучом в зависимости от степени фокусировки может изменяться в значительных пределах. Диаметр пятна нагрева может изменяться от 0,05 до 5 мм, плотность энергии в нем 104¾ 106 Вт/см2 . Электронный луч позволяет проводить сварку материалов с максимальной глубиной проплавления и минимальной зоной термического влияния.

Процесс сварки осуществляется в камерах. Различают однокамерные и двухкамерные установки. В однокамерных установках вследствие ионизации паров металла при нагреве возможно появление дугового разряда, отрицательно влияющего на работоспособность электронной пушки. В двухкамерных установках рабочая камера изолирована от электронной пушки. Высокий вакуум создается только в пространстве (камере), занятом прожектором электронной пушки.

Электронно-лучевая сварка нашла большое применение при изготовлении конструкций из молибдена, вольфрама, тантала, ниобия и других тугоплавких и активных металлов, а также из высокопрочных сталей и алюминиевых сплавов.

К преимуществам метода следует отнести высокие значения эффективного (0,85¾0,95) и термического (0,35¾0,485) КПД, высокую производительность (скорость сварки в 1,5¾2 раза выше, чем при дуговой); незначительную зону термического воздействия, высокую чистоту атмосферы, незначительный расход электроэнергии и т.д. Недостаток электронно-лучевой сварки ¾высокая стоимость оборудования и его сложность, а в некоторых случаях и опасность облучения обслуживающего персонала.

Формирование сварочной ванны и шва.

Электронно-лучевой сваркой могут быть получены различные виды сварных соединений и достаточно большое количество типов швов. Наибольшее распространение способ получил при выполнении стыковых, угловых и реже тавровых соединений. Технологические особенности подготовки кромок и сборки их перед сваркой связаны со специфичностью электронного луча как источника нагрева. В первую очередь необходимо учитывать малые размеры пятна нагрева. Это приводит к получению узких клиновидных швов. Отсюда вытекают высокие требования к точности сборки свариваемых элементов. Подготовка кромок должна обеспечить возможность их тщательной подготовки по всей длине с минимальным зазором и смещением по высоте.



Сварка электронным лучом осуществляется в большинстве случаев без подачи присадочного материала. Усиление шва, как правило, отсутствует. Следовательно, разделка кромок нежелательна.

При сварке стыковых соединений со сквозным проплавлением для формирования обратной стороны шва могут быть использованы остающиеся или съемные подкладки. В отличие от дуговой сварки давление потока электронов на сварочную ванну невелико. Импульс давления, передаваемый единице площади пучком электронов,

,

где j ¾ плотность тока электронного луча; UО ¾ ускоряющее напряжение.

Основное пространственное положение ¾ нижнее. Допускаются значительные отклонения от нижнего с переходом в вертикальное положение по схеме формирования швов на подъем (снизу вверх). При этом создаются условия получения более глубокого проплавления, Благоприятных очертаний шва и даже небольшого усиления.

Процесс сварки электронным лучом может быть выполнен с поверхностным нагревом кромок и глубинным. В первом случае при сварке используют небольшие плотности энергии в пятне нагрева. Во втором случае применяют высокие плотности энергии в пятне нагрева. В сварочной ванне образуется кратер, который способствует глубинному проплавлению металла. Поверхностный нагрев применяют в основном при сварке тонких металлов, он способствует увеличению ширины шва и зоны термического влияния.

Часто встречающийся дефект ¾ несплавление кромок в корне шва ¾ связан со смещением луча относительно стыка при клиновидной форме сечения шва. С увеличением толщины свариваемых элементов вероятность несплавлений возрастает. Исходя из этого, требуется высокая точность направления луча по стыку (отклонения не более ±0,15 мм) с применением систем слежения.

Параметры режима и их влияние на размеры ванны и шва.

Основные параметры режима электронно-лучевой сварки ¾ сила тока, напряжение электронного луча, скорость сварки. Ускоряющее напряжение и сила тока луча определяют мощность источника нагрева.

Ускоряющее напряжение в основном определяет тепловую энергию в пятне нагрева, оказывает исключительно большое влияние на глубину проплавления сварочной ванны. При сохранении постоянной удельной мощности в пятне нагрева глубина проплавления увеличивается с повышением ускоряющего напряжения. В первом приближении глубина проплавления пропорциональна квадратному корню из ускоряющего напряжения.

На практике электронно-лучевую сварку выполняют при ускоряющем напряжении 10¾100 кВ. В процессе сварки необходима высокая стабильность ускоряющего напряжения. Колебание напряжения (±0,1%) приводит к существенному изменению диаметра пятна нагрева и отклонению электронного луча относительно свариваемого стыка.

Ток электронного луча оказывает большое влияние на ширину сварочной ванны и шва. Увеличение силы тока приводит к их существенному возрастанию. Глубина проплавления сварочной ванны мало зависит от величины тока. Однако общее увеличение мощности электронного луча приводит к некоторому ее возрастанию.

Для увеличения глубины проплавления при сравнительно больших ускоряющих напряжениях может быть использован способ формирования на подъем. Особенно большой эффект достигается при сварке вертикальных швов. В этом случае сила тока электронного луча значительно увеличивается и достигает 1 А и выше. На практике величину тока электронного луча выбирают от десятков миллиампер до 1 А и более.

Скорость сварки влияет на размеры сварочной ванны и шва, как и при дуговой сварке. Увеличение скорости сварки при сохранении постоянства погонной энергии несколько увеличивает глубину проплавления, мало влияя на ширину шва.

На размеры сварочной ванны и шва оказывают влияние и дополнительные параметры режима: величина тока в магнитной фокусирующей линзе, остаточное давление в камере; время импульса и паузы при импульсной сварке, колебания электронного луча; расстояние от пушки до свариваемого изделия и др.

Особенно большое влияние на размеры сварочной ванны и шва оказывает величина тока в магнитной фокусирующей линзе (фокусировка). Этот параметр режима определяет конфигурацию потока электронов по отношению к свариваемому изделию, форму ванны и диаметр пятна нагрева. Регулированием тока в магнитной линзе можно в широких пределах изменять концентрацию тепловой энергии в пятне нагрева. Это значит, что при одинаковом значении погонной энергии можно получать различную по форме сварочную ванну и шов. При увеличении силы тока IФ в фокусирующей линзе ширина ванны е сначала снижается, а затем возрастает. Изменение глубины проплавления h при изменении силы тока в фокусирующей линзе имеет зависимость с резко выраженным максимумом. Вследствие того, что hИ и ht при электронно-лучевой сварке вблизи к своему максимуму, площадь проплавления шва Fпр мало зависит от фокусировки. На практике силу тока в фокусирующей линзе выбирают в пределах 50¾100 мА (для пушек со средним ускоряющим напряжением).

Остаточное давление в камере определяет стабильность процесса и качество сварных соединений. Разрежение должно быть достаточным для исключения дугового разряда в течение всего периода сварки. Увеличение давления в камере снижает мощность электронного луча и уменьшает его проникающую способность. Для сохранения постоянного вакуума производительность откачных насосов рассчитывают с учетом повышения давления в камере в процессе сварки. При электронно-лучевой сварке давление в камере поддерживают на уровне 10--4 ¾10--6 мм рт.ст.

Колебания электронного луча позволяют избежать ряда дефектов, свойственных электронно-лучевой сварке (подрезов, несплавлений кромок в корне шва и др.). Используют прямоугольные или синусоидальные поперечные колебания луча в широком диапазоне частот (10¾800 Гц). Амплитуду колебаний выбирают в пределах 0,5¾2 мм. Большие значения амплитуды приводят к раздвоению электронного луча относительно стыка. Наряду с поперечным применяют и продольное колебание луча.

Расстояние от эллектронной пушки до свариваемого издеоия допускается в широких пределах: 50¾120 мм для низковольтных пушек и 50¾500 мм для высоковольтных. Изменение расстояния в процессе сварки на несколько миллиметров не оказывает заметного влияния на размеры швов и их качество.

При импульсном режиме электронно-лучевой сварки тепловыделение дополнительно регулируется частотой и длительностью сварочных импульсов. Импульсная электронно-лучевая сварка особенно целесообразна при выполнении швов с минимальной зоной термического влияния.

Лазерная сварка.

По виду активного вещества излучателя лазеры разделяют на твердые и газовые.

Для перевода активных частиц в возбужденное состояние служат источники возбуждения. Они могут воздействовать на активное вещество световым потоком, потоком электронов, потоком радиоактивных частиц и т.п.





Читайте также:





Читайте также:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...

©2015 megaobuchalka.ru Все права защищены авторами материалов.

Почему 3458 студентов выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.004 сек.)