Мегаобучалка Главная | О нас | Обратная связь


Расчет трансформации солнечной энергии в атмосфере Земли



2015-11-10 3772 Обсуждений (0)
Расчет трансформации солнечной энергии в атмосфере Земли 4.80 из 5.00 5 оценок




Рис.2 не отражает действительного количества солнечной радиации, получаемого поверхностью Земли, так как, проходя через атмосферу, часть излучения поглощается, рассеивается или же отражается облаками.

 

 

 

Коротковолновое излучение поглощается газами в верхней атмосфере, что вызывает фотохимические реакции. Поглощая ультрафиолетовые и рентгеновские лучи, молекулы и атомы этих газов могут терять электроны и становиться положительно заряженными ионами. Область атмосферы, в которой достигается наибольшая концентрация ионов и электронов (60-300 км над поверхностью Земли), называется ионосферой. Именно наличие ионосферы позволяет вести радиопередачи на большие расстояния, так как от нее радиоволны отражаются и возвращаются к поверхности Земли. С другой стороны, под воздействием ультрафиолетовой радиации молекулы могут диссоциировать на отдельные атомы. Кислород диссоциирует именно таким образом, и отдельные атомы кислорода, соединяясь с его молекулами (О2), образуют молекулы озона (О3). Озон в свою очередь при поглощении ультрафиолетовой радиации, имеющей немного большую длину волны, распадается, или же его молекула разрушается при столкновении с еще одним атомом кислорода, в результате чего образуются две молекулы кислорода. Хотя озон возникает в основном на высоте более 40 км, больше всего его скапливается между 20 и 35 км. Это происходит вследствие переноса озона в нижележащие слои атмосферы, где он не так быстро разрушается приходящей радиацией. Здесь озон окончательно поглощает опасную для жизни ультрафиолетовую радиацию, а также небольшое количество более длинноволнового излучения. Сам озон ядовит, за исключением очень малых концентраций. В атмосфере ниже 10 км он практически отсутствует, поскольку разрушается при окислении веществ, поступающих с поверхности Земли.

В целом около 3% поступающей энергии поглощается газами, в основном озоном, в атмосфере выше 10км.

В нижней атмосфере имеется только одна газообразная составляющая, которая способна поглощать значительное количество солнечной радиации, - это водяной пар. Обычно им абсорбируется около 10% солнечного излучения, однако в зависимости от локальных концентраций водяных паров эта величина может несколько изменяться. Кроме того, часть радиации поглощается здесь облаками и присутствующими в атмосфере частицами пыли.

Электромагнитное излучение, встречая на своем пути взвешенные в атмосфере частицы, рассеивается ими (если при этом не происходит его поглощения). Интенсивность рассеяния наиболее высока при наименьших длинах волн. В видимой части спектра голубой свет главным образом рассеивается молекулами воздуха, придавая небу его характерный цвет. Перед восходом и заходом Солнца небо вблизи него приобретает красный или желтый цвет, поскольку после рассеяния голубого света в его спектре становятся преобладающими более длинноволновые составляющие. Рассеяние более крупными частицами не зависит от длин волн приходящей радиации, поэтому при тумане или дымке небо приобретает белый оттенок цвета. В результате рассеяния часть радиации поглощается в атмосфере, а часть после многократного рассеяния достигает поверхности Земли; наконец, около 7% потока солнечной радиации теряется в космическом пространстве.

Поток солнечной радиации, поступающей на поверхность облачного покрова, отражается от него. Отражательная способность облаков, то есть их альбедо, зависит от типа облаков и их мощности. Например, для мощных слоисто-кучевых облаков она может достигать 80%. Но в среднем альбедо облаков составляет около 55%, и большая часть приходящей радиации отражается обратно в космическое пространство.

Процессы поглощения, рассеяния и отражения потока солнечной радиации в обобщенном виде изображены на рис. 1.2.3. При безоблачном небе величина солнечной радиации, которая попадает на земную поверхность, может достигать 80% радиации, поступившей на верхнюю границу атмосферы, а при плотном облачном покрове она снижается до 20%. Если не принимать во внимание облачный покров, колебания величины радиации, достигшей поверхности Земли, зависят от количества присутствующего в атмосфере водяного пара и пыли, а также от расстояния, которое проходят солнечные лучи через атмосферу Земли.

 

Рис. 1.2.3 Ослабление интенсивности солнечной радиации при прохождении через атмосферу (величины даны весьма приближенно, и подразумевается, что они отражают типичные условия).

 

 

При входе в земную атмосферу солнечная радиация расщепляется на три части. Одна из них поглощается водяным паром и озоном. Вторая рассеивается молекулами воздуха, молекулами водяного пара и частицами пыли. Она называется диффузной радиацией или рассеяным излучением. Достигающая земли неизмененная часть называется прямой радиацией. Иными словами, прямая радиация – это радиация, которая поступает от солнца без изменения направления (при этом наклон солнечных лучей, вызванный преломлением в атмосфере, не учитывается). Общая солнечная энергия, достигающая поверхности земли, является суммой прямой и диффузной радиацией.

Проходя сквозь земную атмосферу, солнечная радиация меняется по интенсивности и спектральному составу вследствие поглощения и рассеяния на частицах воздуха, газовых примесей и аэрозоля. У поверхности Земли спектр солнечного излучения ограничен 0,29–2,0 мкм, а интенсивность существенно снижена в зависимости от содержания примесей, высоты над уровнем моря и облачности. До земной поверхности доходит прямая радиация, ослабленная при прохождении сквозь атмосферу, а также рассеянная, образовавшаяся при рассеянии прямой в атмосфере. Часть прямой солнечной радиации отражается от земной поверхности и облаков и уходит в космос; рассеянная радиация также частично уходит в космос. Остальная солнечная радиация в осн. переходит в тепло, нагревая земную поверхность и частично воздух. Солнечная радиация, т. обр., представляет собой одну из осн. составляющих радиационного баланса.

До того, как солнечное излучение достигнет поверхности, оно проделает длинный путь через земную атмосферу, где будет не только рассеяно и ослаблено, но и изменено по спектральному составу. В результате дошедшая до места наблюдения (земной поверхности) в виде параллельных лучей от Солнца так называемая прямая солнечная радиация будет как количественно, так и качественно отлична от солнечной радиации за пределами атмосферы [1]. Солнечная (коротковолновая) радиация преобразуется, проходя через атмосферу, в следующие виды радиации: рассеянную (ввиду наличия в атмосфере различных ионов и молекул газов, частиц пыли происходит рассеяние прямой солнечной энергии во все стороны; часть рассеянной энергии доходит до поверхности Земли), отраженную (часть попавшей в атмосферу и на земную поверхность энергии отражается обратно), поглощенную (происходит диссоциация и ионизация молекул верхних слоях атмосферы, нагрев воздуха и самой земной поверхности, тех предметов, которые на ней находятся).

Вследствие рассеяния и поглощения солнечная радиация, достигающая земли, меньше радиации за пределами земной атмосферы. Понижение интенсивности зависит от атмосферных условий (числа частиц пыли, водяного пара, содержания озона, атмосферного давления и т.д.) и высоты солнца, определяющей расстояние в атмосфере, которое должен пройти солнечный луч, перед тем как попасть на поверхность земли. Если высота солнца небольшая, путь луча длинный. Если солнце находится в зените, солнечный луч проходит близкий к вертикальному, самый короткий путь сквозь атмосферу. Длина пути солнечного луча через атмосферу определяется термином «масса воздуха» (m). Масса возхдуха равна единице, когда солнце находится в зените, то есть когда Al=90?. В общем виде длина солнечного луча m =------------------------------------------------- . вертикальная глубина атмосферы Иными словами, m=cosek Al (рис.3).

 

 

Рис.1. Распределение энергии в спектре солнечной радиации на границе атмосферы: 1- по данным 1903-1910 гг., 2 - 1920-1922 гг., 3 - 1917 г., 4 - абсолютно черное тело при температуре 57130К.

 

Солнечное излучение, проходя через атмосферу, ослабляется благодаря эффектам рассеяния и поглощения. Для потоков лучистой энергии атмосфера в видимой части спектра является мутной средой, т.е. рассеивающей, а в ультрафиолетовой и инфракрасной - поглощающей и рассеивающей. Световой поток поглощается в атмосфере, причем количество энергии, дошедшей до поверхности Земли, можно найти из закона Бугера (закон ослабления света):

 

 

I=I0*exp(-

)[3] (2),

 

где I0 - интенсивность падающего излучения (на границе атмосферы), Z0£ 750 (плоско-параллельная модель атмосферы), H - путь, пройденный светом до земной поверхности, k(h)- коэффициент поглощения (ослабления) светового потока, зависящий от высотного распределения плотности, состава атмосферы, физических и химических свойств газов, частиц, находящихся в атмосфере (рис.2.[1]).

 

 

 

 

Альбедо – доля солнечной радиации, отраженная объектом (обычно выражается в процентах или долях единицы). Альбедо свежевыпавшего снега может достигать 0,81, альбедо облаков в зависимости от типа и вертикальной мощности колеблется от 0,17 до 0,81. Альбедо темного сухого песка – ок. 0,18, зеленого леса – от 0,03 до 0,10. Альбедо крупных акваторий зависит от высоты Солнца над горизонтом: чем оно выше, тем меньше альбедо. Альбедо Земли вместе с атмосферой изменяется в зависимости от облачности и площади снежного покрова. Из всей солнечной радиации, поступающей на нашу планету, ок. 0,34 отражается в космическое пространство и теряется для системы Земля – атмосфера.

Поглощение атмосферой.Около 19% солнечной радиации, поступающей на Землю, поглощается атмосферой (по осредненным оценкам для всех широт и всех времен года). В верхних слоях атмосферы ультрафиолетовое излучение поглощается преимущественно кислородом и озоном, а в нижних слоях красная и инфракрасная радиация (длина волны более 630 нм) поглощается в основном водяным паром и в меньшей степени – углекислым газом.

Поглощение поверхностью Земли. Около 34% приходящей на верхнюю границу атмосферы прямой солнечной радиации отражается в космическое пространство, а 47% проходит сквозь атмосферу и поглощается земной поверхностью. Изменение поглощаемого земной поверхностью количества энергии в зависимости от широты показано в табл. 2 и выражено через среднегодовое количество энергии (в ваттах), поглощенное за сутки горизонтальной поверхностью площадью 1 кв.м. Разность среднегодового прихода солнечной радиации к верхней границе атмосферы за сутки и радиации, поступившей на земную поверхность при отсутствии облачности на разных широтах, показывает ее потери под влиянием различных атмосферных факторов (кроме облачности). Эти потери повсеместно составляют примерно одну треть от поступающей солнечной радиации.

 

 

Таблица 2.

СРЕДНЕГОДОВОЕ ПОСТУПЛЕНИЕ СОЛНЕЧНОЙ РАДИАЦИИ НА ГОРИЗОНТАЛЬНУЮ ПОВЕРХНОСТЬВ СЕВЕРНОМ ПОЛУШАРИИ

(Вт/м2 в сутки)

Широта, °с.ш. 0 10 20 30 40 50 60 70 80 90

Приход радиации

на внешней границе

атмосферы 403 397 380 352 317 273 222 192 175 167

Приход радиации на

земную поверхность

при ясном небе 270 267 260 246 221 191 154 131 116 106

Приход радиации на

земную поверхность при

средней облачности 194 203 214 208 170 131 97 76 70 71

Радиация, поглощенная

земной

поверхностью 181 187 193 185 153 119 88 64 45 31

 

 

Разница между величиной прихода солнечной радиации к верхней границе атмосферы и величиной ее прихода на земную поверхность при средней облачности, обусловленная потерями радиации в атмосфере, существенно зависит от географической широты: 52% на экваторе, 41% на 30° с.ш. и 57% на 60° с.ш. Это прямое следствие количественного изменения облачности с широтой. Из-за особенностей циркуляции атмосферы в Северном полушарии количество облаков минимально на широте ок. 30°. Влияние облачности столь велико, что максимум энергии доходит до земной поверхности не на экваторе, а в субтропических широтах.

Разница между количеством радиации, приходящей на земную поверхность, и количеством поглощенной радиации образуется только за счет альбедо, которое особенно велико в высоких широтах и обусловлено большой отражательной способностью снежного и ледяного покрова.

Из всей солнечной энергии, используемой системой Земля – атмосфера, менее одной трети непосредственно поглощается атмосферой, а основную часть энергии она получает отраженной от земной поверхности. Больше всего солнечной энергии поступает в районы, расположенные в низких широтах.

Излучение Земли.Несмотря на непрерывный приток солнечной энергии в атмосферу и на земную поверхность, средняя температура Земли и атмосферы довольно постоянна. Причина этого заключается в том, что почти такое же количество энергии излучается Землей и ее атмосферой в космическое пространство, в основном в виде инфракрасной радиации, поскольку Земля и ее атмосфера намного холоднее, чем Солнце, и лишь малая доля – в видимой части спектра. Излучаемая инфракрасная радиация регистрируется метеорологическими спутниками, оборудованными специальной аппаратурой. Многие спутниковые синоптические карты, демонстрируемые по телевидению, представляют собой снимки в инфракрасных лучах и отображают излучение тепла земной поверхностью и облаками.

 

 



2015-11-10 3772 Обсуждений (0)
Расчет трансформации солнечной энергии в атмосфере Земли 4.80 из 5.00 5 оценок









Обсуждение в статье: Расчет трансформации солнечной энергии в атмосфере Земли

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3772)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)