Принципы и методы построения имитационных моделей
Процесс функционирования сложной системы можно рассматривать как смену ее состояний, описываемых ее фазовыми переменными Z1(t), Z2(t), … Zn(t) в n – мерном пространстве. Задачей имитационного моделирования является получение траектории движения рассматриваемой системы в n – мерном пространстве (Z1, Z2, … Zn), а также вычисление некоторых показателей, зависящих от выходных сигналов системы и характеризующих ее свойства. В данном случае “движение” системы понимается в общем смысле – как любое изменение, происходящее в ней. Известны два принципа построения модели процесса функционирования систем: 2.3.1. Принцип Для систем, где случайность является определяющим фактором, принцип 1. Определяется условное распределение вероятности на первом шаге (t1= t0+ 2. Вычисляются значения координат точки траектории движения системы (t1= t0+ 3. Отыскиваются условное распределение вектора Принцип 2.3.2. Принцип особых состояний (принцип · обычное, в котором система находится большую часть времени, при этом Zi(t), (i=1 · особое, характерное для системы в некоторые моменты времени, причем состояние системы изменяется в эти моменты скачком. Принцип особых состояний отличается от принципа Примерами систем, имеющих особые состояния, являются системы массового обслуживания. Особые состояния появляются в моменты поступления заявок, в моменты освобождения каналов и т.д. Для таких систем применение принципа В практике использования имитационного моделирования описанные выше принципы при необходимости комбинируют. 2.3.3. Пример применения принципа На рис. 2.2. приведена аналоговая схема дифференцирующего фильтра.
Рис. 2.2. Процесс, происходящий в фильтре, описывается дифференциальным уравнением:
В уравнении: K- коэффициент усиления, х(t) – входной сигнал. Доказано, что Преобразуем математическую модель фильтра (1) к виду, позволяющему применить принцип
Задав начальное условие Z(t0)=Z0 можно построить траекторию процесса, происходящего в фильтре, с целью получения текущего значения производной любой детерминированной функции x(t), подаваемой на вход.
2.3.4. Пример применения принципа особых состояний Рассмотрим магазин мелких подарков “Виртуальный”. В магазине работает один продавец. Требуется имитировать работу магазина с целью изучения перспектив его развития. Из предварительного обследования получена информация, что интервал времени между двумя последовательными приходами покупателей в магазине имеет равномерный закон распределения в интервале (1,10). Время обслуживания покупателей в магазине также распределено равномерно в интервале (1,6). 2.3.5. Основные методы имитационного моделирования Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод. Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Например, когда процесс их функционирования описан дифференциальными или интегродифференциальными уравнениями. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики. Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это – численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования. В параграфах 2-5 данного раздела излагается суть этого метода. Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических так и аналитических моделей, которые взаимодействуют как единое целое. Причем в набор модулей могут входить не только модули соответствующие динамическим моделям, но и модули соответствующие статическим математическим моделям. Вопросы для самопроверки 1. Можно ли все то, что решается с помощью ЭВМ назвать имитационным моделированием? Если – нет, то можно ли указать четкую границу между имитационным моделированием и моделированием с помощью ЭВМ? 2. Объясните, почему метод имитационного моделирования становиться одним из основных инструментов исследования технологических, социально-экономических, биологических и других видов процессов? 3. Объясните разницу между принципами 4. В чем вы видите трудности разработки имитационных моделей больших систем? Перечислите их и прокомментируйте. 5. Имеется квадратная труба с квадратным отверстием внутри нее. По трубе течет горячая жидкость. Труба помещена в ледяную ванну. Распределение температуры в теле трубы в ее сечении удовлетворяет уравнению в частных производных
Uxx+Uyy=0, (3) а распределение температур на границе трубы задано начальными условиями. Разностные уравнения, соответствующие (3) имеют вид:
Задачу можно решить, задавая начальные условия и задавая i и j в соответствии с необходимым количеством разбиений интервалов в направлениях по координатным осям x и y, при реализации модели (4) с помощью ЭВМ, можно ли считать данную модель имитационной? Дайте ответ на этот вопрос, если вместо (3) имеется уравнение Uxx+Uyy=aUt, учитывающее переходной процесс. А если учитывать понижение температуры вдоль трубы и задачу рассматривать как трехмерную? 6. К какому классу относятся системы, для которых применим метод имитационного моделирования? 7. Можно ли отнести модели всех видов процессов, исследуемых с помощью ЭВМ к имитационным?
Упражнения 1. Задано уравнение
а) Преобразовать уравнение к виду, позволяющему применить принцип б) Найдите решение уравнения, то есть математическую модель процесса y(t) с шагом h=1, 0.5, 0.25. в) Сравните результаты с точным решением уравнения г) Проинтегрируйте пункты а) – в) в терминах банковских операций. 2. Задана модель простейшего цифрового фильтра
Здесь х0, х1 . . . входной процесс, заданный дискретными значениями через шаг 3. Степень радиоактивности пропорциональна количеству остающегося радиоактивного вещества. Процесс уменьшения радиоактивности с течением времени может быть описан математической моделью Предположим, что k = 0.01, y0 = 100 (г. радиоактивного вещества). Имитировать процесс распада вещества во времени, построить график процесса, определить сколько вещества останется в момент t=100. Применить принцип 4. Закон распределения интервала времени Т между прибытиями автобуса на остановку распределены по равномерному закону (5 мин., 10 мин.). Имитировать процесс прибытия автобусов в течении часа на ЭВМ. 5. В информационную систему поступают требования на выполнение заявок. Интервалы между требованиями Т распределены нормально. Использовав программный датчик и положив М[Т]=2, и дисперсию D[T]=1, имитировать процесс поступления требований. Положить количество требований равным 100 и получить оценки М[T] и D[T], сравнив их с теоретическими оценками. 6. Проанализируйте процесс решения упражнения 5 и составьте его этапы структурной имитационной модели (рис. 2.1.)
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1229)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |