Мегаобучалка Главная | О нас | Обратная связь  


Набросок основных рассуждений 9 страница




Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

"Другие и еще большие затруднения причиняет нам Венера: если бы она вращалась вокруг Солнца, как утверждает Коперник, то она была бы иногда выше, иногда ниже его, удаляясь от нас и приближаясь к нам в зависимости от диаметра описываемого ею круга; и когда она ниже Солнца и особенно близка к нам, диск ее должен был бы казаться нам немного меньше, чем в 40 раз превосходящим тот, которым она обладает, будучи выше Солнца и близка к другому своему соединению; в действительности же разница почти неуловима" [7].

В своем более раннем сочинении, "Пробирщик", Галилей выразился еще более резко. Отвечая противнику, поставившему вопрос о коперниканстве, он замечает, что "ни Тихо, ни другие астрономы, и даже сам Коперник не смогли ясно опровергнуть {Птолемея}, так как наиболее важные аргументы, следующие из движения Марса и Венеры, всегда стояли на их пути". (Эти "аргументы" вновь упоминаются в "Диалоге" и только что были процитированы.) Он заключает, что "эти две системы {Коперника и Птолемея} несомненно ложны" [8].

Опять-таки мы видим, что понимание Галилеем источника коперниканства заметно отличается от более известных исторических трактовок. Он не указывает новых фактов, которые давали бы индуктивную поддержку идее движения Земли, и не упоминает каких-либо наблюдений, которые опровергали бы геоцентрическую точку зрения, но объяснялись бы коперниканцами. Напротив, он подчеркивает, что не только теория Птолемея, но и теория Коперника также опровергается фактами [9], и восхваляет Аристарха и Коперника за то, что те не сдались перед лицом таких громадных трудностей. Он отдает им должное за то, что они действовали контриндуктивно.



Однако это еще не все [10].

В то время как можно согласиться с тем, что Коперник действовал просто под влиянием веры [11], относительно Галилея нужно сказать, что он находился в совершенно ином положении. В конце концов, Галилей придумал новую динамику. Он изобрел телескоп. Можно указать на то, что новая динамика устраняет противоречие между движением Земли и "условиями, воздействующими на мае и существующими в воздухе над нами" [12]. А телескоп устраняет "даже еще более резкое" столкновение между изменениями видимой яркости Марса и Венеры, рассматриваемыми невооруженным глазом и предсказанными на основе схемы Коперника. Это, между прочим, собственная точка зрения Галилея. Он допускает, что "если бы чувство, более возвышенное и.более совершенное, чем обычное и природное, не объединилось с разумом", то он "был бы... еще противником системы Коперника" [13]. Это "более возвышенное и более совершенное чувство" есть, конечно, телескоп; иногда отмечается, что по видимости контриндуктивная процедура, по существу, была индукцией (или предположением плюс опровержением плюс новым предположением), но опирающейся на лучший опыт, который включал в себя не только лучшие естественные интерпретации, но и лучшее чувственное содержание по сравнению с тем, что было доступно аристотеликам – предшественникам Галилея [14]. Проанализируем последнее утверждение более подробно.

Телескоп есть "более возвышенное и более совершенное чувство", которое дает новые и более надежные свидетельства для суждений по астрономическим вопросам. Как проверить эту гипотезу и какие аргументы были представлены в ее пользу?

В работе "Звездный вестник" [15], которая содержала отчеты о первых телескопических наблюдениях Галилея и была его первым крупным шагом к славе, он пишет, что добился успеха {в сооружении телескопа}, "углубившись в теорию преломления". Это внушает мысль о том, что у него были теоретические основания предпочесть результаты телескопических наблюдений наблюдениям невооруженным глазом. Однако частное основание, которое он указывает, а именно разработка теории рефракции, не было ни корректным, ни достаточным.

Это основание некорректно, ибо существуют серьезные сомнения относительно знания Галилеем тех частей современно физической оптики, которые важны для понимания телескопических феноменов. В письме к Джулиано Медичи от 1 октября 1610 г. [16], т.е. более чем через полгода после опубликования "Звездного вестника", он просит прислать ему копию "Оптики" Кеплера, появившейся в 1604 г. [17], и говорит, что до сих пор ему не удалось достать ее в Италии. Жан Тард, который в 1614 г. спрашивал Галилея относительно построения телескопов заранее намеченной силы, отмечает в своем дневнике, что Галилей считал этот вопрос трудным и нашел "Оптику" Кеплера 1611 г. [18] настолько темной, что, "возможно, сам автор не понимал ее" [19]. В письме к Личети, написанном за два года до смерти, Галилей замечает, что, насколько ему известно, природа света все еще остается неизученной [20]. Даже если рассматривать подобные высказывания с той осторожностью, которой требует столь эксцентричный автор, как Галилей, мы все-таки должны признать, что он знал оптику гораздо хуже, чем Кеплер [21]. К такому же выводу приходит проф. Э. Хоуп, который резюмирует ситуацию следующим образом:

"Утверждение Галилея о том, что, услышав о телескопе, созданном в Нидерландах, он усовершенствовал этот прибор на основании математических вычислений, следует понимать с определенными оговорками, так как в его бумагах мы не находим никаких вычислений, а сообщение в письме о его первых попытках говорит о том, что в его распоряжении не было хороших линз. Шесть дней спустя мы уже видим его на пути в Венецию с улучшенной линзой в руках, которую он везет в подарок дожу Леонардо Донати. Все это похоже не на вычисления, а скорее напоминает метод проб и ошибок. Могли быть вычисления иного рода, которые оказались успешными, так как 25 августа 1609 г. его жалование было увеличено в три раза" [22].

Выражение "метод проб и ошибок" означает, что "в случае с телескопом опыт, а не математика привел Галилея к твердой уверенности в надежности его при бора" [23]. Эта вторая гипотеза о происхождении телескопа также подтверждается сообщениями Галилея, который писал, что он проверил телескоп "сотни тысяч раз на сотне тысяч звезд и других объектов" [24]. Эти проверки завершились удивительно успешно. Современная Галилею литература – письма, книги, памфлеты – свидетельствует о том необычайном впечатлении, которое произвел телескоп как средство улучшения видения земных предметов.

Юлий Цезарь Лагалла, профессор философии в Риме, описывает встречу 16 апреля 1611 г., на которой Галилей демонстрировал свой прибор: "Мы находились на вершине Яникульского холма, недалеко от городских ворот, названных впоследствии воротами Святого Духа, на том месте, где когда-то, как говорят, стояла вилла поэта Марциала, а теперь это собственность его высокопреосвященства архиепископа Мальвазиа. С помощью этого инструмента мы видели дворец знаменитейшего герцога Альтемпса на Тосканском холме столь отчетливо, что легко могли пересчитать все окна, даже самые маленькие, и эго на расстоянии шестнадцати итальянских миль. С того же места мы читали буквы на галерее, воздвигнутой папой Сикстом для бенедиктинцев на Латеранском холме, Так ясно, что различали даже промежутки между буквами на расстоянии по меньшей мере в две мили" [25].

Другие отчеты подтверждают это и подобные события. Сам Галилей указывает на те "большие и важные выгоды, которые можно ожидать от этого инструмента при использовании его на суше и на море" [26]. Следовательно, успех телескопа на Земле не вызывал сомнений. Однако наблюдение с его помощью за небесными. светилами – совсем другое дело.

ПРИЛОЖЕНИЕ 1

Изменение величин светимости планет порой играло важную роль в развитии планетарной теории. Со гласно Симплицию (О небе, II, 12), Аристотель заметил этот феномен, но не исправил свою астрономию кон центрических сфер. Гиппарх упорядочил величины 'неподвижных звезд с помощью числовой шкалы от 1 (самые яркие звезды) до 6 (едва заметные), определяя величины звезд по их яркости на рассвете (Зиннер Э. {402}, с. 30), и вывел радиальное движение из изменения яркости неподвижных звезд (Плиний. Естественная история, II, 24) и планет (II, 13). Птолемей (Альмагест, IX, 2) определяет задачу планетарной теории как показ того, что "все видимые неправильности происходят благодаря круговому движению (с постоянной угловой скоростью)", и рассматривает две аномалии движения планет, даже не упоминая о яркости. Он "спасает" эти аномалии в том смысле, что истолковывает их в терминах круговых движений с постоянной угловой скоростью, а не в том смысле, что находит некоторую произвольную формулу для предсказания феноменов (Ф. Крафт {Beitrage zur Geschichte der Wissenschaft und Technik, №5. Wiesbaden, 1955, с. 5} обосновал, что именно этот смысл "спасения" является правильным). Согласно Симплицию (О небе, II, 12) и Проклу (Нуро typosis, I, 18), "спасение" данных феноменов в этом смысле включает в себя тот факт, что "планеты сами изменяют свою яркость", а это изменение "спасается" за счет "эксцентров и эпициклов" (там же, VII, 13). Позднее, когда механизм эпициклов стал рассматриваться лишь как средство для вычислений (для справок см. П.Дюгем {81}), изменение яркости было устранено из числа феноменов, которые нужно было "спасать", и иногда они использовалось даже в качестве аргумента против буквального истолкования изменения расстояния между Землей и планетами (см. ниже об Осиандере). Однако некоторые астрономы использовали расхождение между изменением расстояния, вычисленным согласно" одному из вариантов теории Птолемея, и действительными изменениями величины планет в качестве аргумента против системы эпициклов. Примерами могут служить Генрих из Гессена {187} и магистр Гулмен {Тгас tatus de reprobationibus epicyclorum et eccentricorum (1377)} в последующем пересказе Зиннера ({402}, с. 81 и ел.). Согласно Генриху из Гессена, яркость Марса, вычисленная по Аль-Фараби, изменяется в соотношении 1:100, в то время как сравнение со свечой, которую" сначала помещают на таком расстоянии, чтобы она была видна как Марс в состоянии наибольшей яркости, а затем отодвигают на расстояние в десять раз большее, показывает, что в своей минимальной яркости он дол жен быть невидим. Магистр Гулмен вычисляет изменение величины как 42:1 для Венеры, 11:1 для Марса, 4:1 для Луны и 3:1 для Юпитера, замечая при этом, что все эти соотношения противоречат наблюдению. Региомонтан ссылается на необычные изменения яркости Венеры и Марса ({402}, с. 133).

Если использовать данные Птолемея (Альмагест, X. 7), то для Марса вычисление дает изменение диаметра в отношении 1:8, изменение диска – в отношении 1:64 (что в соответствии с Евклидовой оптикой можно рассматривать как корректную меру изменений яркости). Реальное же изменение располагается между 1:16 и 1:28, что отличается от вычисленных величин (различие между двумя соотношениями обусловлено разницей в базисе измерения). Для Венеры расхождение еще более заметно. Коперник ({218a}, гл. 10, последний параграф) и Ретик ({334}, с. 137) считают эту проблему решенной, но это неверно. В своем "Малом комментарии" {218а} Коперник дает для Марса такие значения: радиус "большого круга" – 23; радиус деферента – 38; радиус первого эпицикла – 5 (см. Розен {334}, с. 74,. 77); следовательно, отношение наибольшего расстояния к наименьшему будет: 50+(38-25)+5/(38-25)-5, т.е. 68:8, как и было раньше (Галилей ({334}, с. 321 и ел.) дает отношение 1:8 для Марса и 1:6 для Венеры). Если оценки величин в XIV-XVII вв. были достаточно точными для обнаружения расхождений между предсказаниями Птолемея и реальными изменениями величин – и Генрих из Гессена, и Региомонтан и Коперник осознавали их, – то проблема планетных величин сохранилась у Коперника в неизменном виде (таково же мнение Д.Прайса ({319}, с. 213)).

Это обстоятельство подметил зловредный Осиандер, который упоминает данную проблему в своем "Введении" к работе Коперника "О вращениях небесных сфер", превратив ее в обоснование "гипотетического", т.е. инструменталистского, характера космологии Коперника. Он писал, в частности: "Нет необходимости в том, чтобы эти гипотезы были истинными; они не обязаны быть даже правдоподобными; достаточно, если они приводят к вычислениям, согласующимся с результатами наблюдения; нужно быть совершенным невеждой в вопросах геометрии и оптики, чтобы рассматривать эпициклы Венеры как нечто правдоподобное и допускать, что они являются причиной того, что эта планета то в сорок (или более) раз ближе к нам, чем Солнце, то во столько же раз дальше, чем оно. Ибо кто же не знает, что такое допущение необходимо влечет, что диаметр планеты, когда она ближе всего к Земле, должен быть в четыре раза больше по сравнению с тем, который она имеет, будучи в самой отдаленной точке, а ее тело – в шестьдесят раз больше, что противоречит опыту всех времен" (курсив мой. – П.Ф.).

Выделенный отрывок замалчивается и критиками и доброжелателями Осиандера (Дюгем {81}, с. 66 цитирует Осиандера до и после этого отрывка, но сам отрывок опускает), разъясняет природу его инструментализма. Известно, что он был инструменталистом как по философским, так и по тактическим причинам (письмо к Ретику от 20 апреля 1541 г., напечатанное в {40}, с. 25), а также потому, что инструментализм соответствовал одной из наиболее влиятельных традиций в астрономии (письмо к Копернику от 20 апреля 1541 г., помещенное в работе Дюгема {81}, с. 25). Теперь мы видим, что у него были также и физические основания для принятия этой философии: в реалистической интерпретации учение Коперника было несовместимо с очевидными фактами. Этот момент не упомянут в напыщенной статье Поппера "Три точки зрения на человеческое познание" ({310}, с. 97 и ел.), в которой ссылки на Осиандера даны без физических оснований его интерпретации. Поэтому у Поппера Осиандер предстает каким-то философски" догматиком, хотя на самом деле он истинный попперианец и серьезно относится к опровержениям. См. также мою статью "Реализм и инструментализм" {115}. Аргумент Осиандера рассмотрен и решительно отвергнут Джордано Бруно: "Видимая величина свечения объекта не позволяет нам заключать о его действительной величине или о расстоянии, на котором он находится" ({37}, с. 64). Это верно, но не было принято Галилеем, которому нужны были трудности для того, чтобы усилить свою пропаганду в пользу телескопа.

ПРИЛОЖЕНИЕ 2

Хотя работа Мэчемера и предназначена для того, чтобы превратить Галилея в выставочный образец методологической мудрости, она не подрывает моего главного аргумента, который гласит: Галилей нарушает важнейшие правила научного метода, изобретенные Аристотелем, усовершенствованные Гроссетесте (наряду с другими) и канонизированные логическими позитивистами (такими, как Карнап и Поппер); Галилей добивается успеха потому, что не следует этим правилам; его современники, за очень небольшим исключением, не замечали фундаментальных трудностей, имевшихся в то время; вследствие этой небрежности современная наука развивалась быстро и в "правильном" направлении (с точки зрения поклонников науки сегодняшнего дня). Невежество обернулось удачей. И наоборот, более последовательное применение канонов научного метода, более целенаправленный поиск нужных фактов, более критическая позиция, не содействующая ускорению этого развития, должны были бы остановить его. Именно это я хочу обосновать своим исследованием творчества Галилея. Имея это в виду, что можно сказать по поводу аргументов Мэчемера и его союзников?

"Обсуждая некоторый вопрос, – пишет Мэчемер, Фейерабенд постоянно... игнорирует другие важные вопросы". Под этим он подразумевает, что я обсуждаю только слабые пункты учения Галилея и опускаю многие прекрасные аргументы в пользу движения Земли, которые, по всей вероятности, были ему известны. Учитывая свою цель, я вполне могу поступить так: чтобы показать, что суждение "все вороны черные" отстаивается с помощью сомнительных аргументов, достаточно взять одну белую ворону и разоблачить попытки утаить ее существование, превращая ее в черную ворону или заставляя людей верить, что она на самом деле черная. При этом множество черных ворон, которые, без сомнения, существуют, вполне можно игнорировать. Чтобы показать, что суждение "Земля движется" обосновывается сомнительными средствами, достаточно найти хотя бы одну трудность этой концепции и разоблачить все попытки замолчать ее или превратить в подтверждающее свидетельство. Опять-таки мы вполне можем игнорировать положительные для этой гипотезы факторы, которые, между прочим, в случае с Галилеем являются гораздо более слабыми и неопределенными, чем в случае с воронами: фазы Венеры, упоминаемые Мэчемером, не делают движение Земли более правдоподобным, что он и сам признает (Тихо Браге!), поэтому Галилей привлекает их напрасно, лишь увеличивая число аргументов против своей концепции. Теория приливов, которую Мэчемер подает в качестве главного аргумента в пользу движения Земли, может выполнять эту роль только в том случае, если не обращать внимания на собственные трудности этой теории (которые были достаточно велики, чтобы их не мог не заметить даже самый тупой моряк), аналогично тому, как Галилей не обращал внимания на свидетельства против движения Земли (с этим Мэчемер согласен, см. с. 9). Тот факт (если это действительно факт), что некоторые непросвещенные современники Галилея нашли эту теорию интересной, приняли и начали разрабатывать ее, лишь подтверждает мою позицию, согласно которой научное исследование всегда нарушает важнейшие методологические правила и не может осуществляться без этого. Бóльшая стройность системы Коперника (см. с. 12) является особенно плохим примером для автора и особенно хорошим для меня: в "Малом комментарии" Коперник действительно разработал систему, которая была простой и более последовательной, чем система Птолемея. Со временем он опубликовал работу "О вращениях...", в которой простота и стройность были принесены в жертву точному представлению движения планет. Галилей игнорирует эту потерю, так как вообще не обращает внимания на эпициклы. Он обращается к теории, даже еще более примитивной, чем теория, представленная в "Малом комментарии", и эмпирически уступавшей теории Птолемея. Я вовсе не критикую его за это (и за его умолчание проблемы планетных движений). Совсем Напротив, я думаю, что это был единственный способ достигнуть прогресса. Для достижения успеха мы должны отойти от очевидности, уменьшить степень эмпирической адекватности (эмпирического содержания) наших теорий, отказаться от ранее достигнутого и начать сначала. Почти все современные методологи, включая Мэчемера, думают иначе – именно это я и хочу показать.

Суммируем эту часть дискуссии: в своих целях я могу спокойно опустить "аргументы", выдвинутые Галилеем в пользу движения Земли. Включение этих аргументов в дискуссию лишь усиливает мою позицию.

Здесь уместно высказать несколько кратких методологических замечаний. Во-первых, Мэчемер часто неправильно понимает мой способ рассуждения. Так, например, он возражает против моего утверждения о том, что оптика Кеплера опровергалась простыми фактами, на том основании, что я вообще отвергаю возможность опровергнуть теорию фактами. Это было бы справедливо, если бы в отрывке, о котором идет речь, я обращался к самому себе. В этом случае действительно я был бы вынужден ответить на вопрос: "Однако, дорогой Пол Ф., разве Вы не помните, как Вы сказали, что теорию нельзя опровергнуть даже наиважнейшим фактом?" Но я разговариваю не с самим собой, а обращаюсь к людям, которые признают правило фальсификации, и у них данный пример вызывает беспокойство. Логики склонны называть это argumentum ad hominem. Ну что же, в своем сочинении я обращаюсь именно к людям, а не к собакам или логикам. Аналогичные замечания касаются и многих других критических высказываний Мэчемера. (Между прочим, я бы никогда не согласился со "снисходительным" прочтением Мэчемером моих слов в прим. 13. Мой аргумент гораздо более эффективен в сформулированном мною виде.)

Во-вторых, Мэчемер часто привлекает статьи, написанные мной давным-давно, и сопоставляет их с теми, которые я писал позднее. Здесь он, без сомнения, попал под влияние тех философов, которые, сделав крохотное открытие, возвращаются к нему снова и снова вместо того, чтобы сказать что-либо новое, и которые этот недостаток -отсутствие идей – превращают в достоинство, а именно в последовательность. Во время написания новой статьи я обычно забываю то, что писал раньше, и использование прежних аргументов должно "оцениваться по-новому.

В-третьих, Мэчемер не понимает даже тех идей, которые я действительно защищаю. Я никогда не говорил, как он мне приписывает, что любые две конкурирующие теории несоизмеримы (прим. 35). На самом же деле я утверждал, что определенные конкурирующие теории, так называемые "универсальные" или "неограниченные" теории, при определенной интерпретации нелегко сравнивать. В частности, я никогда не считал, что теории Птолемея и Коперника несоизмеримы. Это не так.

Вернемся к истории. Мэчемер пытается показать, что история создания телескопа была совсем не такой, как я изобразил ее. Для того чтобы разобраться, кто здесь прав, а кто ошибается, я повторю свой основной тезис. Он включает в себя два утверждения: 1) существовавшие в то время оптические теории не давали удовлетворительной теоретической основы для построения телескопа, а после того, как он был изобретен, вызывали сомнение в надежности результатов, полученных с его помощью ; 2) Галилей не был знаком с оптическими теориями своего времени.

В отношении утверждения 2) Мэчемер, демонстрируя большую ученость, указывает на то, что Галилей знал, что свет распространяется прямолинейно и отражается под тем же углом, под которым падает, и что ему были известны также основы триангуляции (именно об этом говорят его ссылки на с. 14 и 15). Sancta simplicitas! В следующий раз на лекции по дифференциальному исчислению я скажу, например, что Строусон и его партнеры не знают математики, а кто-нибудь возмутится и скажет, что Строусон наверняка знает таблицу умножения! Отвечаю: утверждая, что Галилей не знал оптики, я вовсе не хочу сказать, будто ему не были известны даже элементарные вещи. Я имею в виду, что он не был знаком с теми разделами оптики, которые в то время были необходимы для создания телескопа – если допустить, что телескоп был создан в результате понимания фундаментальных принципов оптики. Что это за принципы?

Имеется два элемента оптики начала XVII в., которые были необходимы, но недостаточны для понимания телескопа. Ни один из них не был разработан даже в общих чертах, и они не были соединены в рамках некоторой цельной теории. Эти элементы таковы: а) знание образов, создаваемых линзами, и б) знание вещей, рассматриваемых через линзу.

Первый элемент принадлежит чистой физике. В оптической литературе, на которую ссылается Мэчемер, нигде нет какого-либо анализа образов, создаваемых выпуклыми линзами. Было достаточно трудно объяснить даже те образы, которые возникали при рассмотрении через мельчайшие отверстия без линз (см. ошибки, встречающиеся в трактате Пекэма (Pechem) "Перспектива" {256}, с. 67 и сл.). Правильное объяснение (не касающееся линз) было дано Мавроликом, однако его книга вышла в свет лишь в 1611 г., через год после опубликования "Звездного вестника". Что касается второго элемента, который, по-видимому, неизвестен Мэчемеру, то ситуация еще более плачевна. Пекэм, осознающий константность феноменов (там же, с.147), подчеркивает, что "невозможно удостоверить размер объекта, видимого под преломленными лучами" (там же, с.217), а это означает, что для него физиологическая оптика преломляющей среды лишена очень важного момента: она ничего не говорит о том, что будет с "размером" в условиях преломления лучей. Добавление к этому аристотелевского принципа, гласящего, что чувственное восприятие, применяемое в необычных обстоятельствах, дает результат, не соответствующий реальности, делает очевидными трудности а) и б) при раздельном их рассмотрении.

В телескопе эти два процесса соединяются, чтобы дать единый эффект. Теоретически не существовало способа достигнуть их соединения, разве только на базе совершенно новых принципов. Эти принципы (и среди них один ложный) были предложены Кеплером в 1604 и 1611 гг.

Такова историческая ситуация. Что может сказать о ней Мэчемер? Он пишет: "Всякий, кто читал Пекэма... знает, что любой оптический инструмент, изготовленный из линз, можно было объяснить на основе оптических законов – законов преломления и природы света" (с. 18). Мы видели, что "всякий, кто читал Пекэма", пришел бы совсем к другому заключению. Он бы понял, что "законов преломления и природы света" для этого недостаточно, что нужно учитывать деятельность глаз и мозга, а эта деятельность в случае преломляющих сред неизвестна. Он бы понял, что рассуждение, приводящее к созданию телескопа, "достаточно просто для любого, кто изучал оптику" (прим. 61), только в том случае, если под "оптикой" подразумевать оптику после Кеплера. Мэчемер, который считает, что знания законов преломления достаточно для понимания телескопа, и молчаливо принимает точку зрения Кеплера, приписывая ее Пекэму (выступающему против упрощенного ее варианта), не имеет ни малейшего представления о том достижении, которым является переход от старых воззрений к Кеплеру и Декарту. Хотя (ошибочные) идеи Кеплера, если их не анализировать, могут показаться грубыми некоторым "историкам" науки XX столетия, изобретение этих идей в тех исторических обстоятельствах, которые я описал, было вовсе не простым делом. Пришел ли Галилей к этому замечательному изобретению? Это представляется весьма неправдоподобным. В его письмах и сочинениях нет никаких следов этого. Учебники, такие, как книга Пекэма, находились на высшем уровне сложности, труднодоступном для понимания, да и этих учебников было недостаточно. Кроме того, они задавали ошибочное направление. Возможно, конечно, что Галилей, не обращая внимания на тщательно разработанные психологические законы, сформулированные в этих книгах, использовал закон преломления, сочтя несомненным, что большие углы означают большие размеры даже в преломляющих средах, и на этой основе двинулся вперед. Я не думаю, что он действовал таким образом, но если так было, а Мэчемер весьма близок к предположению, что Галилей поступил именно так, то это вновь усиливает мою позицию: Галилей добился успеха благодаря игнорированию важных фактов (таких, как постоянство феноменов), разумных объяснений (которых он либо не знал, либо не понимал) и развивая до предела ложные гипотезы (даже у Пекэма было достаточно оснований считать их ложными). Вместе с тем частые ссылки Мэчемера на традиционные учебники в этом случае оказались бы совершенно излишними.

Рассмотрим, далее, характер наблюдений Галилея. Я утверждаю, что некоторые телескопические наблюдения Галилея были противоречивыми, а другие могли быть исправлены с помощью наблюдений невооруженным глазом. Относительно этого последнего пункта Мэчемер говорит, что "исторически ни один из современников Галилея не привел этого аргумента" (прим. 12). Это и неверно, и не имеет значения. Кеплер оспаривал впечатление ровности линии края лунного диска и побуждал Галилея "исследовать этот вопрос снова". А если больше никто не пытался вникнуть в это дело, то это лишь показывает, что люди не занимались тщательными наблюдениями и поэтому могли легко принять новые астрономические чудеса Галилея. И снова невежество или халатность оказались благом. На меня не производят никакого впечатления "вычисления" проф. Ригини (Righini) (с. 23), каковы бы они ни были, ибо для таких вычислений требуется только общее распределение света и тени, которое, вероятно, Галилей получил правильно. На меня также не производит впечатления тот факт, что некоторые ученые узнают некоторые объекты на Луне Галилея. Что меня здесь поражает, так это громадное различие между Луной Галилея и тем, что каждый может видеть собственным невооруженным глазом. Если это различие обусловлено стремлением Галилея подчеркнуть определенные аспекты Луны, которые он считал существенными, как подозревает Мэчемер, то мы опять возвращаемся к моему тезису, согласно которому Галилей часто отходил от фактов, для того чтобы утвердить свою точку зрения. Это довольно далеко от того, что говорит Мэчемер.

Мэчемер совершенно не упоминает о парадоксальных сторонах наблюдений Галилея, например о том факте, что Луна у него выглядит неровной в середине, но совершенно ровной по краям, или о том, что планеты кажутся увеличенными, а неподвижные звезды уменьшаются в размерах. Никто, кроме Кеплера, не обратил внимания на такие несообразности, что опять показывает, как мало задумывались над подобными наблюдениями. (Как раз бездумность современников и позволила Галилею достичь столь многого.)




Читайте также:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (364)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.022 сек.)
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7