Абсолютная и относительная погрешности. Погрешности вычислительного алгоритма
Погрешности вычислительного алгоритма.
Необходимо подчеркнуть, что процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, потому что на каждом этапе вносятся те или иные погрешности. Так, построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются неустранимыми, поскольку они неизбежны в рамках данной модели. При переходе от математической модели к численному методу возникают погрешности, называемые погрешностями метода. Они связаны с тем, что всякий численный метод воспроизводит исходную математическую модель приближенно. Наиболее типичными погрешностями метода являются погрешность дискретизации и погрешность округления. Поясним причины возникновения таких погрешностей. Обычно построение численного метода для заданной математической модели разбивается на два этапа: а) формулировка дискретной задачи, б) разработка вычислительного алгоритма, позволяющего отыскать решение дискретной задачи. Например, если исходная математическая задача сформулирована в виде системы дифференциальных уравнений, то для численного решения необходимо заменить ее системой конечного, может быть, очень большого числа линейных или разностных алгебраических уравнений. В этом случае говорят, что проведена дискретизация исходной математической задачи. Простейшим примером дискретизации является построение разностной схемы путем замены дифференциальных выражений конечно-разностными отношениями. В общем случае дискретную модель можно рассматривать как конечномерный аналог исходной математической задачи. Ясно, что решение дискретизированной задачи отличается от решения исходной задачи. Разность соответствующих решений и называется погрешностью дискретизации. Как уже отмечалось, дискретная модель представляет собой систему большого числа алгебраических уравнений. Невозможно найти решение такой системы точно и в явном виде. Поэтому приходится использовать тот или иной численный алгоритм решения системы алгебраических уравнений. Входные данные этой системы, а именно коэффициенты и правые части, задаются в ЭВМ не точно, а с округлением. В процессе работы алгоритма погрешности округления обычно накапливаются, и в результате решение, полученное на ЭВМ, будет отличаться от точного решения дискретизированной задачи. Результирующая погрешность называется погрешностью округления (иногда ее называют вычислительной погрешностью). Величина этой погрешности определяется двумя факторами: точностью представления вещественных чисел в ЭВМ и чувствительностью данного алгоритма к погрешностям округления.
Абсолютная и относительная погрешности Пусть имеется некоторая числовая величина, и числовое значение, которое ей присвоено Погрешность может принимать как положительное так и отрицательное значение. Величина Абсолютной погрешностью приближенного значения
Качество приближения существенным образом зависит от принятых единиц измерения и масштабов величин, поэтому целесообразно соотнести погрешность величины и ее значение, для чего вводится понятие относительной погрешности. Относительной погрешностью приближенного значения называют величину . Относительную погрешность часто выражают в процентах. Использование относительных погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц измерения. Так как точное значение обычно неизвестно, то непосредственное вычисление величин абсолютной и относительной погрешностей по предложенным формулам невозможно. Более реальная и часто поддающаяся решению задача состоит в получении оценок погрешности вида:
где Поскольку точное значение
В литературе по методам вычислений широко используется термин "точность". Точное значение величины — это значение, не содержащее погрешности. Повышение точности воспринимается как уменьшение погрешности. Часто используемая фраза "требуется найти решение с заданной точностью
Популярное: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Почему стероиды повышают давление?: Основных причин три... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (907)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |