Мегаобучалка Главная | О нас | Обратная связь


Всегда ли “эквивалентная” замена арматуры является эквивалентной?



2015-11-20 1439 Обсуждений (0)
Всегда ли “эквивалентная” замена арматуры является эквивалентной? 0.00 из 5.00 0 оценок




Далеко не всегда. Например, если в изгибаемой конструкции за­менить два растянутых стержня ма­лого диаметра одним стержнем боль­шого диаметра, равным по площади сечения, то может заметно снизить­ся трещиностойкость. Кроме того, при использовании стержней большего диаметра их центр тяжести переме­щается в сторону нейтральной оси, а если учесть необходимость увели­чения защитного слоя, то переме­щение будет еще большим. Все это приведет к уменьшению плеча внут­ренней пары сил и соответствующе­му снижению прочности. Похожие последствия от подобной замены будут и в колоннах, нагруженных с большим эксцентриситетом. С дру­гой стороны, замена в колоннах про­дольных стержней большого диамет­ра стержнями малого потребует установки дополнительных поперечных стержней (см. вопрос 3.9). Как видно из приведенного, в любом случае замену нельзя выполнять механичес­ки, без просчитывания возможных по­следствий.

 

3.5. Отчего может снизиться прочность опорных участков ба­лок и плит?

Самая главная причина — непра­вильное поперечное армирование. Например, слишком редкий шаг по­перечных стержней (хомутов) может привести к тому, что опасная наклон­ная трещина пройдет между хомута­ми и последние в работу не будут вовлечены (рис. 21, а). Подобное ча­сто происходит тогда, когда хомуты проектного диаметра заменяют хо­мутами большего диаметра, одновре­менно увеличивая их шаг. К такому же результату может привести и боль­шое удаление первого хомута от опоры (рис. 21, б). Некачественная приварка к продольным стержням резко ухудшит анкеровку хомутов и приведет к их выдергиванию из бе­тона. В преднапряженных конструк­циях важными причинами являются также уменьшение силы предвари­тельного обжатия и снижение пере­даточной прочности бетона.

 

3.6. К чему приводит непра­вильная перевозка и складирова­ние сборных железобетонных конструкций?

При неправильной перевозке и складировании в конструкциях воз­никают такие усилия от собствен­ного веса, на которые они не рас­считаны. Например, если подкладки под балками или плитами располо­жены далеко от торцов, то в нор­мальных сечениях возникают боль­шие изгибающие моменты отрица­тельного знака, растягивающие вер­хнюю грань, где армирование мало или вообще отсутствует. Это может привести не только к образованию больших трещин у верхней грани, но и к излому (разрушению) изде­лия. Особенно "капризны" в этом отношении преднапряженные кон­струкции, у которых к моменту от собственного веса Mw добавляется момент от силы предварительного обжатия Мр , тоже отрицательного знака (рис. 22, а).

Повредить сборные изделия можно и не сильно удаляя подклад­ки от торцов. Достаточно, например, при штабелевании плит расположить подкладки не строго друг под дру­гом, а со смещением. Тогда про­изойдет разрушение нижних изде­лий, не рассчитанных на столь боль­шие нагрузки (рис. 22, б).

3.7. От чего зависит прочность бетона?

Прочность бетона зависит не только от его состава и технологии приготовления, но и от качества уплотнения. При плохом уплотнении прочность может снизиться в 2 раза и более. Плохо уплотненный бетон имеет много пор, раковин и каверн, у него снижается не только проч­ность, но и водонепроницаемость и морозостойкость, он не в состоя­нии надежно защитить арматуру от коррозии. Некачественное уплотне­ние бетона чаще всего встречает­ся в концевых участках конструкций (там, где наибольшее насыщение арматурой или закладными деталя­ми), а также в узлах соединения сборных или сборно-монолитных конструктивных элементов, в столб­чатых фундаментах и свайных ро­стверках. Зачастую именно этот де­фект является причиной аварийно­го состояния конструкций и зданий.

 

3.8. Как влияет снижение проч­ности бетона на несущую способ­ность колонн?

Многое зависит от того, как при­ложены усилия к колонне. Если сжи­мающая сила приложена централь­но или с малым эксцентриситетом (обычно, это колонны многоэтажных связевых каркасных зданий, внутрен­ние колонны многопролетных одно­этажных зданий и мн. др.), то в та­ких колоннах всё или почти всё се­чение сжато, и прочность бетона используется максимально (рис. 23, а). Здесь снижение прочности бетона, по существу, равнозначно снижению несущей способности самих колонн (за вычетом несущей способности продольной арматуры).

Если сжимающая сила приложе­на с большим эксцентриситетом (крайние колонны некоторых одно­этажных зданий с мостовыми кра­нами, колонны крановых эстакад и др.), то в нормальных сечениях об­разуется значительная растянутая зона и в работу вступает растяну­тая арматура S (рис. 23, б). Поэтому несущая способность колонн опре­деляется моментом внутренней пары сил, плечо которой z зависит и от прочности бетона. Однако зависи­мость эта — не прямая, и влияние прочности бетона на несущую спо­собность колонн не столь велико, как у колонн первого типа, но всё же больше, чем у изгибаемых кон­струкций. Очевидно, что контролю прочности бетона при изготовлении колонн следует уделять особо при­стальное внимание.

Сборные колонны могут оказать­ся в аварийном состоянии и тогда, когда зимой, вскоре после термо­обработки, они были вывезены из цеха на открытый воздух и смонти­рованы на объекте (обычно отпуск­ная прочность бетона при этом со­ставляет не более 70% проектной). Если монтаж здания ведется уско­ренными темпами и завершается в течение зимы, то бетон не в состо­янии набрать проектную прочность и несущая способность колонн мо­жет оказаться недостаточной для восприятия нагрузок от вышераспо­ложенных этажей. В подобных ситу­ациях следует заранее оговаривать с заводом-поставщиком отпускную прочность бетона и отражать ее в паспортах изделий.

 

3.9. Как влияет изменение по­ложения рабочей арматуры на не­сущую способность колонн?

При сжатии с малыми эксцентри­ситетами увеличение или уменьше­ние защитного слоя оказывает не столь большое влияние на несущую способность колонн, как при сжатии с большими эксцентриситетами. При сжатии с большими эксцентрисите­тами изменение положения рабочей арматуры непосредственно влияет на плечо внутренней пары сил, а зна­чит, и на несущую способность — при увеличении защитного слоя уменьшает её, а при уменьшении увеличивает. Однако уменьшение защитного слоя, как отмечено выше (см. вопрос 3.3), чревато коррозией арматуры и снижением огнестойко­сти конструкций.

 

3.10. Что может произойти, если поперечная арматура в ко­лоннах установлена редко?

 

Разрушение сжатого бетона про­исходит в результате его попереч­ных деформаций. Под их влиянием продольная арматура стремится вы­пучиться наружу, т.е. потерять ус­тойчивость. Этому препятствует по­перечная арматура, которая, соглас­но нормам проектирования, долж­на устанавливаться в сварных кар­касах с максимальным шагом, рав­ным 20 диаметрам продольной ар­матуры. Если ее установить реже (или приварить некачественно), то произойдет преждевременная потеря устойчивости продольной арматуры, а вместе с ней и преждевременное разрушение колонны (рис. 24). В равной мере это относится к арма­туре сжатых стержней ферм и сжа­той зоны балок.

 

 

3.11. Отчего происходит рас­калывание оголовков колонн?

Причиной являются чрезмерные напряжения смятия в бетоне, возни­кающие при передаче нагрузки че­рез небольшую площадь (центриру­ющие прокладки, торцевые ребра стальных балок и т. п.). Повысить со­противление бетона смятию можно с помощью сеток косвенного арми­рования, устанавливаемых в оголов­ках колонн, а снизить напряжения смятия можно с помощью толстых стальных листов с анкерами (распре­делительных подушек), устанавлива­емых взамен обычных закладных де­талей. В любом случае, принимае­мое конструктивное решение необ­ходимо проверять расчетом, ибо по­казанная на рис. 25 схема разру­шения колонны — не плод фанта­зии автора, а факт, неоднократно имевший место в действительности.

 

3.12. Чем опасно некачествен­ное обетонирование выпусков ар­матуры в стыках колонн?

Выпуски арматуры размещают­ся в выемках, которые ослабляют поперечное сечение колонн. После сварки арматурных стержней выем­ки заделывают бетоном — чтобы не только защитить арматуру от кор­розии, но, главным образом, чтобы восстановить полное расчетное се­чение колонны. В связи с этим и прочность монолитного бетона сты­ков принимается не ниже прочнос­ти бетона стыкуемых колонн. При некачественном обетонировании — низкой прочности бетона или пло­хом его уплотнении — нагрузка в стыке воспринимается не всем се­чением, а только его частью, что вызывает чрезмерно высокие напря­жения, приводит к раздавливанию бетона колонн вблизи стыка (обыч­но, уже в процессе эксплуатации здания) и аварийному состоянию конструкций. Устранение этого опас­ного дефекта — мероприятие весь­ма дорогостоящее. Между тем, про­контролировать качество обетонирования достаточно легко в процессе строительства, да и устранить этот дефект в строящемся здании намно­го проще, чем в эксплуатируемом

 

3.13. Чем опасен перекос зак­ладных деталей соединяемых кон­струкций?

При перекосе закладных дета­лей опирание верхней конструкции становится неустойчивым. Во избе­жание этого, монтажники устанав­ливают дополнительные прокладки, которые зачастую выполняют из арматурных стержней или узких пла­стин. В итоге, нагрузка передается по небольшой площади, что вызы­вает значительные местные напря­жения сжатия (смятия) и образова­ние трещин раскалывания (рис. 26).

Конечно, подобные изделия следу­ет считать браком и возвращать их на завод-изготовитель. Если по ка­ким-то причинам бракованные кон­струкции приходится монтировать, то прокладки нужно выполнять таким образом (например, из клиновидных или набора тонких пластин), чтобы обеспечить равномерное распреде­ление опорных реакций.

 

3.14. Почему наиболее часто повреждаются плиты покрытия, поддерживающие малоуклонную совмещенную кровлю?

При малом уклоне (1:20 и ме­нее) на углублениях мягкой кровли, даже самых небольших, застаивает­ся дождевая вода, которая при за­мерзании разрывает водоизоляционный ковер. Проникая через раз­рывы, вода увлажняет цементную стяжку, разрушает ее в процессе попеременного замораживания и оттаивания и далее попадает в утеп­литель. Поскольку при традиционной конструкции совмещенной кровли вентиляция отсутствует, утеплитель накапливает влагу и со временем полностью утрачивает свои тепло­защитные свойства. К этому нега­тивному процессу часто добавляет­ся и другой: при плохой заделке швов между плитами через щели проникает теплый воздух из поме­щения, пары которого конденсиру­ются под гидроизоляцией и замачи­вают утеплитель (см. главу 1).

Всё это приводит к тому, что кровля промерзает, а бетон плит подвергается морозному разруше­нию с последующим обнажением и коррозией арматуры. Кроме того, утяжеление утеплителя приводит и к перегрузке несущих конструкций покрытия. Как показывают многочис­ленные обследования, такая конст­рукция кровли (заимствованная из стран Запада, где средняя темпера­тура января не опускается ниже 0°С) совершенно неприемлема для су­ровых климатических условий боль­шей части территории России, а Сибири — особенно.

 

3.15. Почему при наличии проветриваемого чердака в пе­рекрытии верхнего этажа не сле­дует делать цементную стяжку поверх утеплителя?

Если пароизоляция перекрытия выполнена некачественно (что случается довольно часто), то ее роль начинает выполнять цементная стяж­ка, поскольку у нее намного мень­шая паропроницаемость, чем у утеп­лителя. Проникающие снизу пары теплого воздуха, оседая на нижней поверхности холодной стяжки, обра­зуют конденсат, замачивают утеп­литель, снижают его теплозащитные свойства и, в итоге, приводят к про­мерзанию плит перекрытия. Цемен­тную стяжку можно применять лишь при условии устройства в ней раз­рывов (просветов), выполняющих фун­кции своего рода продухов, через которые может испаряться влага из утеплителя. И уж совсем недопусти­мо накрывать утеплитель полиэтиле­новой пленкой, а поверх нее устра­ивать стяжку (некоторые проектиров­щики отличились и таким "ноухау").

 

3.16. Чем опасны подвесные потолки?

Опасны тем, что они закрывают доступ для осмотра конструкций пе­рекрытий и покрытий и создают, тем самым, препятствие для принятия своевременных профилактических или противоаварийных мер. Если съемные потолки (типа "армстронг") позволяют осматривать несущие конструкции хотя бы небольшими фрагментами, то несъемные лиша­ют и этой возможности. Кроме того, крепежные детали подвески потол­ков нарушают целостность конструк­тивных элементов. (Здесь речь не идет о тех случаях, когда имеется межферменное пространство, дос­таточное для осмотра конструкций.) Следовательно, подвесные потолки косвенно снижают долговечность несущих конструкций перекрытий и покрытий, что должны учитывать про­ектировщики. В связи с этим реко­мендуется при устройстве несъем­ных потолков предусматривать до­полнительный резерв несущей спо­собности конструкций перекрытий и покрытий не менее 20%, а при уст­ройстве съемных — не менее 10%.

 

3.17. Что произойдет, если концы пустот в плитах перекры­тий не заделать бетоном?

В горизонтальном сечении же­лезобетонных плит перекрытий пус­тоты составляют около 80% и лишь 20% остается ребрам, которые и испытывают давление вышележащей стены. Если давление превысит не­сущую способность ребер, произой­дет их раздавливание — явление не столь уж редкое в практике стро­ительства. Чтобы увеличить площадь горизонтального сечения, концы пу­стот заделывают бетоном. В 1-2 - этажных жилых каменных зданиях пустоты можно не заделывать. При большем числе этажей рёбра плит следует проверять расчетом, по ре­зультатам которого в проекте долж­но быть записано соответствующее указание.

 

3.18. Чем опасны зазоры меж­ду нижней плоскостью плит пере­крытий и кладкой смежной сте­ны?

Ширина плит перекрытий не все­гда бывает кратной длине перекры­ваемых помещений. В этом случае проектировщики предусматривают монолитные вставки. Зачастую, од­нако, строители выбирают более легкий путь — заводят крайнюю плиту внутрь смежной стены (рис. 27), при этом между нижней плоскостью плиты и кладкой образуется зазор (горизонтальная щель). Зазор этот опасен тем, что плита, получив воз­можность свободно деформировать­ся, испытывает большие изгибающие и крутящие моменты от веса выше­лежащей стены, что может привес­ти к образованию в плите значи­тельных трещин и даже разруше­нию.

Во избежание аварии необходи­мо образовавшиеся зазоры тщатель­но зачеканить цементным раствором марки не ниже 100, а при высоте зазора более 20 мм — бетоном клас­са В7,5 (в крайнем случае, цемент­ным раствором с добавлением щеб­ня). Следует помнить и о том, что заведение плиты в стену на глубину более 50...60 мм может привести к раздавливанию бетона плиты.

 

3.19. Почему нельзя более 100 суток хранить преднапряженные железобетонные изделия?

Хранить, конечно, можно, но при­менять после столь длительного хра­нения можно далеко не всегда. Если в течение 100 суток после изготов­ления изделия не были смонтирова­ны и нагружены полезной нагрузкой, то потери напряжений в арматуре увеличатся, а жесткость и трещиностойкость конструкций уменьшатся по сравнению с проектными. Следо­вательно, должны быть снижены и нормативные (допустимые эксплуата­ционные) нагрузки, величина кото­рых определяется перерасчетом се­чений на основе фактического воз­раста конструктивных элементов. Причем не обязательно изделие дол­жно долго пролежать на складе. Ре­зультат будет тот же, если оно будет вовремя смонтировано, но долго не нагружено полезной нагрузкой (чаще других это случается с плитами пе­рекрытий). Не учет этого обстоятель­ства иногда приводит к неприятным результатам — чрезмерным проги­бам, недопустимому раскрытию тре­щин и, как следствие, к необходи­мости усиления конструкций.

 

3.20. К чему может привести укладка бетона фундаментов на прослойки льда?

При таянии льда под подошвой фундамента образуются пустоты, и давление на грунт становится не­равномерным (рис. 28). Неравномер­ность давления приводит к нерав­номерным деформациям основания и к возникновению изгибающих моментов в фундаментной подушке (плите) — тем больших, чем больше толщина и площадь поверхности льда. В результате этого образуют­ся трещины не только в самом фун­даменте, но и в стенах. Данный де­фект чаще всего встречается в зданиях, у которых работы по устрой­ству фундаментов проводились по­здней осенью.

 

3.21. К чему может привести укладка бетона ростверков на неочищенную поверхность свай?

Когда между обрезкой голов свай и бетонированием ростверка возникает длительный перерыв в работе, на поверхности свай может накопиться грязь или мусор. Если поверхность не очистить, то под дей­ствием нагрузки от стен ростверк со временем просядет относитель­но свай, причем просядет неравно­мерно, а это приведет к образова­нию трещин (и даже разрушению) ростверка с последующим образо­ванием опасных трещин в стенах. Тот же результат может получиться, если головы свай не очищены от льда или снега.

3.22. Как влияют дефекты мон­тажа на несущую способность стыков крупнопанельных зданий?

При снижении марки раствора со 100 до 50 прочность платфор­менных стыков снижается на 10%, а до 25 — на 30%. При уменьше­нии длины (глубины) опирания плит перекрытия с 70 до 50 мм проч­ность стыков снижается на 25...30%. При утолщении растворных швов с 20 до 50 мм прочность снижается на 20%. При эксцентриситете при­ложения нагрузки от вышерасполо­женных стен, равном 35 мм (несо­осность стеновых панелей), прочность снижается более чем на 30%. По­добные дефекты (не столь уж ред­кие в строительной практике) вызы­вают неравномерные деформациям стен, образование трещин в пане­лях и швах и пр. повреждения, а в сочетании с другими дефектами — обрушение панельных зданий.

К сожалению, при перепланиров­ке помещений и устройстве новых проемов в стеновых панелях суще­ствующих зданий проектировщики, как правило, не учитывают реаль­ного качества монтажа (которое можно установить только при деталь­ном обследовании). Эта небрежность зачастую приводит к дополнитель­ным повреждениям вышележащих стен и перекрытий, а иногда и к аварийным последствиям.

 

Каменные конструкции

4.1. К чему приводит некаче­ственная перевязка швов камен­ной кладки?

При сжатии в каменной кладке, как и в других материалах, возни­кают поперечные деформации, ко­торые приводят к образованию вер­тикальных трещин, затем делению кладки на отдельные столбики и последующему их разрушению. Некачественная перевязка провоци­рует раннее образование таких тре­щин (рис. 29, а, вид сбоку) и снижа­ет несущую способность на вели­чину до 25%.

Качество перевязки, к сожале­нию, не всегда можно проконтро­лировать простым осмотром повер­хности стен. В стенах толщиной 2 кирпича и более при хорошем внешнем виде может полностью от­сутствовать внутренняя перевязка (рис. 29,6, разрез), что обнаружи­вается только тогда, когда стены уже находятся в аварийном состоянии. Еще опаснее забутовка из половняка и кирпичного боя, что редкос­тью на стройках, к сожалению, не является. Поэтому при выполнении кладочных работ необходимо сис­тематически осуществлять не толь­ко приёмочный (выходной), но и опе­рационный контроль качества.

4.2. К чему приводит утолще­ние горизонтальных швов в ка­менной кладке?

При толщине швов более 20 мм прочность кладки снижается на 10...20% в зависимости от марки раствора. Для такого снижения прочности достаточно 3-4-х утолщен­ных швов на 1 м высоты, при боль­шем их количестве прочность сни­жается еще больше.

 

4.3. К чему приводит плохое заполнение вертикальных швов в каменной кладке?

Приводит не только к резкому снижению теплозащитных свойств наружных стен, но и к снижению прочности кладки не менее чем на 10%, поскольку незаполненные вер­тикальные швы — это "инициаторы" вертикальных трещин. Для каче­ственного заполнения швов кирпич следует укладывать методом «впри­тык» или «вприсык». Многие камен­щики предпочитают более простую «технологию»: раскладывают кирпич и поливают его сверху раствором. К сожалению, брак этот (особенно у иностранных рабочих) стал на­столько массовым, что на него пе­рестали обращать внимание не только мастера и прорабы, но и контролирующие службы. Одна из причин слабого контроля состоит в том, что плохое заполнение верти­кальных швов можно обнаружить только в процессе работы, а не на боковых поверхностях уже готовой кладки (там швы всегда замазаны). Проектировщикам же можем толь­ко порекомендовать: не закладывать в проекты 100%-ное использование расчетного сопротивления кладки сжатию — по крайней мере, до тех пор, пока на стройках в этом воп­росе не будет наведен порядок.

 

4.4. К чему приводит некаче­ственное армирование каменной кладки?

Сетчатое армирование сдержи­вает поперечные деформации клад­ки и, тем самым, повышает ее проч­ность при сжатии (максимально — в 2 раза). Рост прочности зависит не только от диаметра стержней и раз­меров ячеек арматурных сеток, но и от того, с каким шагом по высоте они установлены. Если расстояние между соседними сетками хотя бы в одном месте оказалось больше проектного, то прочность всего эле­мента определяется прочностью это­го слабого участка, а если хотя бы в одном месте расстояние превы­шает 400 мм (или 5 рядов кладки из стандартного кирпича), то проку от армирования нет вообще. Меж­ду тем именно несоблюдение шага сеток (пропуски) является весьма распространенным браком в рабо­те каменщиков, в результате кото­рого несущая способность стен и простенков резко снижается.

Причина здесь, однако, не толь­ко в нерадивости рабочих, но и в психологическом барьере: для ка­менщика это дополнительная опе­рация, отвлекающая его от более привычных — проверки размеров кладки, ее вертикальности, перевяз­ки швов, горизонтальности рядов и т.п. Не зря поэтому нормы проекти­рования рекомендуют использовать армированную кладку только в тех случаях, когда другие меры исчер­паны. К сожалению, проектировщи­ки далеко не всегда следуют этой рекомендации.

4.5. Чем опасна кладка кир­пича на обледенелую поверх­ность?

Прочность кладки определяется не только прочностью кирпича и раствора (при соблюдении прочих требований), по и сцеплением меж­ду ними. Если прерванную кладку продолжать по обледенелой повер­хности (а это часто происходит, ког­да накануне шел дождь, а ночью подморозило), то сцепление свежеуложенного раствора со старой кладкой будет отсутствовать — даже при последующем оттаивании на­леди. Столь же негативный резуль­тат — и при использовании обледе­нелого кирпича. Прочность такой кладки настолько резко снижается, что может привести к разрушению колонн и простенков при действии нагрузок, далеко не достигших рас­четных значений (известно немало таких случаев).

Именно этой причиной объясня­ется известное технологическое тре­бование: при перерыве в работе, когда появляется риск образования наледи, горизонтальную поверхность кладки необходимо укрывать рубе­роидом, пленкой или др. водонеп­роницаемым материалом. Понятно, что одновременно надо укрывать и поддоны с кирпичом.

 

4.6. Как влияет снижение мар­ки кирпича и раствора на проч­ность кладки?

Марка кирпича влияет на проч­ность кладки сильнее, чем марка раствора. Причем, чем выше марка раствора, тем ее влияние слабее. Например, снижение марки кирпи­ча со 100 до 75 снижает прочность кладки на 16...17%, а аналогичное снижение марки раствора — всего на 5...6%. Поэтому для большинства каменных конструкций марку раство­ра выше 75 не назначают. Однако, если в проекте заложен раствор невысокой прочности, то снижение его марки заметно снизит не толь­ко расчетное сопротивление клад­ки, но и упругую характеристику, от которой зависит устойчивость сжатых элементов, а сама кладка может перейти в более низкую группу, для которой многие расчет­ные требования ужесточаются.

Следует также иметь в виду, что чем ниже марка раствора, тем у него более рыхлая структура, тем ниже его морозостойкость, следо­вательно, тем ниже и долговечность самой кладки. Последнее особен­но касается стен подвала, цоколей и карнизов.

 

4.7. Чем опасно "подмолаживание" раствора?

На строительном жаргоне "подмолаживание" означает повторное разведение водой загустевшего це­ментного раствора. Операция эта столь же распространенная, сколь и недопустимая. В результате нее раствор резко теряет свою проч­ность, что опасно для несущих эле­ментов кладки, становится рыхлым и легко размораживается (выветри­вается), что опасно для конструк­ций, эксплуатируемых на открытом воздухе.

 

4.8. К чему приводит недоста­точная глубина опирания элемен­тов перекрытий (покрытий) на ка­менные стены, пилястры и колон­ны?

Чем меньше глубина (площадь) опирания конструкций, тем выше напряжения смятия в каменной кладке. Если глубина опирания не­достаточна, напряжения превышают прочность кладки на смятие, в ней образуются опасные трещины, ко­торые вызывают скол кладки и обрушение опирающейся конструкции — фермы, балки, плиты, перемычки (рис. 30). К сожалению, этот опас­нейший дефект является распрост­раненным и нередки случаи, когда он приводит к гибели людей.

 

4.9. К чему приводит отсут­ствие распределительных железо­бетонных плит под опорами ри­гелей (ферм, балок)?

Распределительные плиты (подуш­ки) выравнивают давление под опо­рами конструкций, уменьшая мак­симальные значения напряжений смятия в кладке. Причем, чем боль­ше толщина подушки, тем более равномерны напряжения. На эти уменьшенные значения напряжений и рассчитывают прочность кладки. Если предусмотренная проектом подушка не установлена, напряже­ния смятия возрастут, что может привести к аварийным последстви­ям (см. предыдущий ответ). Подуш­ки необходимо ставить всегда, ког­да опорная реакция превышает 100 кН (10 т), даже если они не требу­ются по расчету. Толщина подушек назначается не менее 150 мм, а их объемное армирование не менее 0,5%. Следует, однако, помнить о том, что сами подушки непосред­ственно воспринимают опорное дав­ление, поэтому их также нужно рас­считывать на смятие с подбором требуемой арматуры и класса бе­тона.

 

4.10. Какую роль играют ар­матурные сетки в кладке под опо­рами балок, прогонов и перемы­чек?

Если железобетонные подушки уменьшают напряжения смятия в кладке, то сетки увеличивают ее расчетное сопротивление смятию. При смятии разрушение кладки начинается с образования неболь­ших трещин непосредственно под опорами. Сетки предотвращают развитие этих трещин и, тем самым, удерживают кладку от разрушения. Отсюда ясно, что устанавливать сетки следует в самых верхних швах, иначе пользы они не принесут (рис. 31). Отсутствие сеток в тех случаях, когда они необходимы по расчету, может вызвать аварийное состояние кладки и потребовать ее усиления.

 

4.11. Чем опасны тонкие не­сущие стены?

Если при строительстве допуще­на несоосность стен или колонн одного этажа по отношению к сте­нам или колоннам другого, то на­грузка на нижние конструкции ока­зывается приложенной с дополни­тельным эксцентриситетом е (рис. 32). В результате, уменьшается пло­щадь сжатой зоны сечения и увели­чиваются сжимающие напряжения. Например, в прямоугольном сече­нии эксцентриситет 20 мм умень­шает расчетную высоту сжатой зоны на 40 мм.

Понятно, что чем меньше толщина (высота нормального сечение тем более опасные последствия вызывает несоосность вышерасположенных стен или колонн. Во внутренних стенах толщиной 1 кирпич (250 мм) даже допустимые нормам величины отклонения осей стен смещения перекрытий приводит к увеличению напряжений в кладке на 15% и более. Если к допустимым отклонениям добавить недопустимые (но, увы, распространенные), то в результате перегрузки кладка может прийти в аварийное состояние. Поэтому проектировщикам следует учитывать вероятность смещения, продуманно подходить к выбору толщины внутренних несущих стен, придерживаясь правила: стены толщиной 1 кирпич назначать высотой более одного этажа, толщиной кирпича — не более 3...4 этажей.

 

4.12. Какой недостаток смежных кровель с уклонами взаиимно перпендикулярного направления?

Если кровля выполнена с перепадом высот, то вода, стекающая с верхней кровли, направляется далее по нижней кровле мощным узким потоком, с которым нижняя кровля не справляется (особенно при неорганизованном водостоке. В результате происходит сильное замачивание смежной стены и мо­розное разрушение кладки (рис 33). Проектирования подобных кровель следует избегать, а если в них воз­никает безоговорочная необходи­мость, следует предусматривать вы­сокие фартуки из оцинкованной стали или другие меры, защищаю­щие смежную стену.

В кровлях без перепада высот при организованном водостоке (в зданиях, сложных в плане) проекти­ровщики часто допускают другую ошибку — неравномерно распре­деляют площадь кровли («бассейн» стока воды) между водосточными трубами. Наибольшая нагрузка, обычно, приходится на трубы, рас­положенные у входящих (внутренних) углов здания — как раз там, где наружный воздух более застойный и проветривание стен затруднено. В результате значительная часть дождевой воды льется мимо труб, сильно замачивает карнизы и верх­ние части стен, а затем и размора­живает кладку. Наилучший способ избежать этого, к сожалению, рас­пространенного недостатка — так организовать водостоки, чтобы во­обще исключить установку водосточных труб в вершинах внутренних углов здания.

 

4.13. Что может служить при­чинами замачивания стен подва­ла атмосферной водой?

Причин несколько. Во-первых, отсутствие отмостки или некаче­ственное ее выполнение.

Во-вторых, плохая вертикальная планировка прилегающей террито­рии, или, говоря иначе, наличие обратного уклона дневной поверх­ности при отсутствии водоотвода. В этом случае отмостка для атмосфер­ной воды помехой не является. Осо­бенно часто подобное явление встречается не в построенных, а в еще строящихся зданиях, располо­женных на скатах местности, — стро­ители стараются не обременять себя проблемой устройства хотя бы временного водоотвода.

В-третьих, плохая вертикальная гидроизоляция стен подвала. Неред­ко строители обмазывают стены не битумом, как положено, а только т. н. “праймером”, состоящим на 80...85% из солярки и на 15...20% из биту­ма, который не изолирует стены, а лишь придает им черный цвет.

В-четвертых, применение раство­ров низких марок в швах между бе­тонными блоками. Как правило, та­кие растворы имеют рыхлую струк­туру и через них легко фильтруется влага. Еще более опасен другой, не менее частый дефект: плохое запол­нение раствором вертикальных швов между бетонными блоками — имен­но через такие швы вода беспре­пятственно проникает внутрь стен и замачивает их на всю толщину (а при отсутствии бетонного пола — также и фундаменты с основанием). Даже после устранения всех пере­численных дефектов стены подвала еще много лет остаются сырыми.

 

4.14. Что может служить при­чинами выдавливания стен подва­ла?

Главная причина — в чрезмер­ном боковом давлении грунта Q, которым засыпаны пазухи котлова­на (рис. 34). Боковое давление за­висит от коэффициента внутренне­го трения (угла естественного отко­са) грунта: чем меньше значение коэффициента, тем больше давле­ние. Минимальное значение коэф­фициента — у водонасыщенного (разжиженного) грунта. Отсюда по­нятно, почему выдавливание стен подвала происходит в тех случаях, когда пазухи котлована были засы­паны мерзлым грунтом, сильно на­сыщенным водой до замерзания (ко­торый при оттаивании превращает­ся в жижу), или когда атмосферная вода интенсивно замачивает уже засыпанный грунт — обычно, при плохом его уплотнении и наличии обратного уклона без водоотвода. Выдавливанию способствует также отсутствие бетонного пола в подва­ле, служащего нижней горизонталь­ной опорой для стен, и небольшая этажность здания, при которой мала вертикальная нагрузка N (сила при­жима, повышающая сопротивление сдвигу стен).

 

4.15. Что может служить при­чиной обрушения кирпичных карнизов?

Наиболее часто кирпичные кар­низы обрушаются при наличии со­вмещенных кровель. Причина обру­шения состоит в нарушении герме­тичности кровли: атмосферная вода проникает в утеплитель, стекает по поверхности плит покрытия к кар­низу, там постепенно накапливает­ся и замачивает каменную кладку (рис. 35). Мокрая кладка подверга­ется попеременному заморажива­нию и оттаиванию и теряет проч­ность. Для предотвращения этого явления (или, по крайней мере, для смягчения его воздействия) можно порекомендовать заподлицо с верх­ней плоскостью плит покрытия в кар­низах устраивать продухи, которые одновременно могут служить слива­ми для накопившейся в утеплителе воды. Однако самое надежное ре­шение — вообще не применять со­вмещенные невентилируемые кров­ли, особенно малоуклонные.

 

4.16. Как быть, если несущей способности перекрытия недостаточно для восприятия нагрузок от кирпичных перегородок?

При реконструкции зданий ста­рые деревянные перегородки зача­стую заменяют более тяжелыми кир­пичными, нагрузку от которых пере­крытия воспринимать не в состоя­нии. В результате нередки случаи появления значительных трещин и прогибов в конструкциях перекры­тий, свидетельствующих о перегрузке последних.

Для уменьшения нагрузки на перекрытия можно поступить следу­ющим образом. В нижние ряды клад­ки уложить продольную арматуру, затем выложить перегородку на не­большую высоту (последняя опреде­ляется расчетом), дать выдержку не менее 7 суток, а затем довести клад­ку до конца. Такой порядок ограни­чивает нагрузку на перекрытие толь­ко весом нижней части перегород­ки. После набора раствором опре­деленной прочности нижняя часть работает как армированная кирпич­ная балка и передает на перекры­тие нагрузку от вышележащей час­ти только по концам, вблизи опор, т. е. работает как висячая стена. Разумеется, такой прием имеет смысл применять лишь тогда, когда перегородки ориентированы в на­правлении пролета балок или плит перекрытий, а сами они являются глухими (без дверных проемов).

 



2015-11-20 1439 Обсуждений (0)
Всегда ли “эквивалентная” замена арматуры является эквивалентной? 0.00 из 5.00 0 оценок









Обсуждение в статье: Всегда ли “эквивалентная” замена арматуры является эквивалентной?

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1439)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.018 сек.)