Мегаобучалка Главная | О нас | Обратная связь


Методические указания для выполнения контрольной работы по теме линейная алгебра и аналитическая геометрия



2015-11-27 360 Обсуждений (0)
Методические указания для выполнения контрольной работы по теме линейная алгебра и аналитическая геометрия 0.00 из 5.00 0 оценок




Методические указания содержат примеры решения некоторых задач по геометрии и алгебре с необходимыми теоретическими обоснованиями этих решений. Для успешного выполнения контрольной работы необходимо проработать лекции по данной дисциплине, ответить на контрольные вопросы и разобрать примеры.

Задача 1.Решить систему алгебраических уравнений по формулам Крамера и методом Гаусса: .

Решение.

1) Метод Крамера.

Если главный определитель системы отличен от нуля, то система, содержащая уравнений и неизвестных, имеет единственное решение, определяемое по формулам Крамера:

Главный определители составлен из коэффициентов при неизвестных, побочные определители получаются из главного определителя заменой -го столбца столбцом свободных членов.

В заданной системе уравнений неизвестные обозначены буквами . Составим определитель системы и определители :

Определитель третьего порядка задается равенством:

Правило «треугольников» или правило Саррюса вычисления определителей третьего порядка: первое из трех слагаемых, входящих в сумму со знаком «+», есть произведение элементов главной диагонали, второе и третье – произведение элементов, находящихся в вершинах двух треугольников с основаниями, параллельными главной диагонали. Три слагаемых, входящих в сумму со знаком «–», определяются аналогичным образом, но относительно второй (побочной диагонали).

Определитель системы . Вычисляем побочные определители и, пользуясь формулами Крамера, найдем неизвестные

2)Метод Гаусса.

Данный метод состоит в последовательном исключении неизвестных. Составим матрицу коэффициентов при неизвестных и свободных членов. С помощью элементарных преобразований над строками приведем расширенную матрицу системы к ступенчатому виду:

.

Вторая матрица получена из первой путем поочередного умножения первой строки на (-4), (-6) и прибавления соответственно ко второй, третьей строке первой матрицы; третья – путем деления второй строки на (7), затем вторую строку умножаем на (-4) и прибавляем к третьей строке. В последней матрице третья строка разделена на (-7). Вертикальной чертой в матрицах отделен столбец из свободных членов.

Последней матрице соответствует система уравнений

из которой, выполняя обратный ход, находим

Следовательно, исходная система имеет решение

Задача 2.Решить матричное уравнение:

Решение. Запишем данное матричное уравнение в виде Его решением является матрица (если существует обратная матрица ).

1)Найдем определитель матрицы :

Значит, обратная матрица существует, и исходное уравнение имеет единственное решение.

2)Найдемобратную матрицу по формуле , где – присоединенная матрица , полученная транспонированием из матрицы, составленной из алгебраических дополнений к элементам .

3)Найдем матрицу :

Задача 3.Найти значение матричного многочлена , если

Решение.Если то матричный многочлен имеет вид где – заданная матрица, Еединичная матрица того же размера.

1)

2)

Задача 4. Вычислить объем пирамиды с вершинами в точках и ее высоту, опущенную из вершины на грань .

Решение. В задаче необходимо найти объем треугольной пирамиды. Искомый объем пирамиды представляет одну шестую часть объема параллелепипеда, построенного на трех векторах. Образуем векторы , , и найдем их координаты.

Если вектор задан точками и , то его координаты вычисляются по формулам , , : .

Находим координаты векторов: , , . Найдем смешанное произведение данных векторов; его модуль равен объему параллелепипеда, построенного на данных векторах: .

Объем пирамиды . Так как объем пирамиды есть , то ее высота определяется по формуле , где – площадь основания. В основании пирамиды лежит треугольник. Площадь треугольника равна половине площади параллелограмма, построенного на векторах и , т.е. . Имеем , . Тогда векторное произведение векторов . Найдем модуль векторного произведения , а затем вычислим площадь треугольника . Следовательно, высота, проведенная из вершины , будет равна

Задача 5. Даны вершины треугольника Найти внутренний угол при вершине .

Решение. Угол при вершине есть угол между векторами и . Определим координаты этих векторов: Найдем их модули:

Из определения скалярного произведения следует, что косинус угла между векторами можно вычислить по формуле

а угол при вершине треугольника .

Задача 6. Вычислить площадь параллелограмма, построенного на векторах и , если , ,

Решение. Найдем сначала векторное произведение векторов и , затем вычислим его модуль. Этот модуль численно равен площади параллелограмма, построенного на векторах и .

;

.

Следовательно, площадь параллелограмма

Задача 7. Разложить вектор по базису, образованному векторами , , .

Решение. Разложить вектор по векторам это значит представить его в виде линейной комбинации где – искомые числа (постоянные величины). Сначала проверим, действительно ли векторы образуют базис. Для этого составим определитель третьего порядка из координат этих векторов и убедимся, что он отличен от нуля:

Векторы линейно-независимы. Представим линейную комбинацию в координатной форме и составим систему линейных уравнений, – неизвестные величины.

Решение полученной системы можно найти по формулам Крамера, методом Гаусса или с помощью обратной матрицы (см. задачи №1, 2). Данная система имеет решения: Следовательно, разложение вектора имеет вид:

Задача 8.Даны вершины треугольника . Найти уравнения прямых и ; уравнение высоты, проведенной из точки ; уравнение медианы, проведенной из вершины .

Решение. Уравнения прямых и составим как уравнения прямых, проходящих через две точки.

Уравнение прямой, проходящей через две точки и , имеет вид:

: Полагая , получим или т.е. или .

: , получим или

Уравнение высоты , опущенной из вершины , составим как уравнение прямой, проходящей через точку , перпендикулярно прямой . Уравнение прямой, проходящей через данную точку в данном направлении, имеет вид: . Угловой коэффициент определим из условия перпендикулярности прямой и высоты : . Представим уравнение прямой в виде , из данной записи видно, что . Следовательно, Координаты точки и полученный угловой коэффициент подставим в искомое уравнение: . Преобразуем данное уравнение или

Уравнение медианы, проведенной из вершины , составим как уравнение прямой, проходящей через две точки: точку и точку – середину стороны . Координаты середины отрезка можно найти по формулам: Обозначим середину отрезка через точку и найдем ее координаты:

Таким образом, уравнение медианы имеет вид или . После преобразований получим : .

Задача 9. Определить какая кривая задана уравнением и указать ее основные параметры и построить:

а) ; в) ;
б) ; г) .

Решение: Линии, определяемые алгебраическими уравнениями второй степени относительно т.е. (коэффициенты одновременно не равны нулю), называются кривыми второго порядка. Каждое из заданных уравнений не содержит члена с произведением разноименных координат, следовательно, оно может определять окружность, либо эллипс, либо гиперболу, либо параболу с осями симметрии, параллельными осям координат.

а) . Выделим полные квадраты по каждой из переменных и преобразуем уравнение к простейшему виду:

Уравнение задает окружность с центром в точке и (рис.1).

 
 

 

 

 


Рис.1.

б) . Преобразуем уравнение

Уравнение – эллипс с центром в точке , полуоси: (рис.2).

 

 

Рис.2.

в) . В левой части уравнения выделим формулу полного квадрата и приведем к каноническому виду:

Уравнение определяет параболу с вершиной в точке , осью симметрии , ветви в положительном направлении оси . Точки пересечения с : , тогда ; отсюда (рис.3).

 
 

 


Рис.3.

г) Заданное уравнение преобразуем

y
Полученное уравнение определяет гиперболу с центром симметрии в точке и полуосями , (рис.4).

 
 

 

 


Рис.4.

Задача 10.Составить уравнение плоскости, проходящей через точку перпендикулярно вектору , если .

Решение. Искомое уравнение плоскости имеет вид: , где – координаты вектора , перпендикулярного данной плоскости.

Вектор имеет координаты или Так как плоскость перпендикулярна вектору , то значения параметров и равны соответственно. Уравнение плоскости, таким образом, имеет вид Точка по условию задачи лежит в плоскости. Следовательно, подстановкой координат точки в уравнение плоскости получим:

Отсюда находим, что Уравнение искомой плоскости:

или

Задача 11. Найти величину угла между плоскостями:

1) и

2) и

Решение. Углом между двумя плоскостями называется угол между нормальными векторами этих плоскостей. Если две плоскости заданы уравнениями и то величина угла между ними вычисляется по формуле:

Величина наименьшего из двух смежных углов, образованных этими плоскостями, находится по формуле:

1) Воспользуемся формулой для нахождения острого угла между плоскостями и подставим в нее значения коэффициентов

Отсюда следует, что угол между плоскостями

2)В данном задании можно заметить, что выполняется условие перпендикулярности плоскостей : . Следовательно, плоскости взаимно перпендикулярны;

Задача 12.Даны комплексные числа . Требуется:

1) вычислить ;

2) вычислить и сделать проверку;

3) найти модуль и аргумент числа с точностью до записать это число в тригонометрической и показательной формах;

4) найти все значения корня ;

5) решить уравнение .

Решение. Заданы комплексные числа в алгебраической форме , где – действительные числа, – мнимая единица, ; .

1) Произведением комплексных чисел и называется комплексное число, определяемое равенством

Например, .

Два комплексных числа и , отличающиеся лишь знаком мнимой части, называются сопряженными. Если задано число , то сопряженное число . Найдем произведение

.

2) Частным двух комплексных чисел и называется комплексное число , которое, будучи умноженным на , дает число .

На практике частное двух комплексных чисел находят путем умножения числителя и знаменателя на число, сопряженное знаменателю («избавляются от мнимости в знаменателе»).

Сделаем проверку, найдя произведение

Таким образом, частное вычислено правильно.

3) Тригонометрическая форма комплексного числа ; показательная форма , где – модуль, угол – аргумент комплексного числа.

Аргумент

Представим число в тригонометрической и показательной формах. Найдем модуль и аргумент заданного числа с точностью до :

Таким образом, – тригонометрическая форма заданного комплексного числа;

4) Корень ой степени из комплексного числа имеет различных значений, которые находят по формуле

Число представим в тригонометрической форме: – тригонометрическая форма.

По формуле находим

Полагая получим

Найденным значениям корня соответствуют вершины правильного треугольника, вписанного в окружность радиуса с центром в начале координат.

5)Решить уравнение , если .

Найдем модуль комплексного числа и возведем его в квадрат: Подставим число 50 в заданное уравнение и получим квадратное уравнение .

Известно, что квадратное уравнение , где – действительные числа, имеет действительное решение только в случае, если дискриминант этого уравнения неотрицателен. Если дискриминант , то действительных решений нет. Причина отсутствия корней заключается в невозможности, оставаясь в рамках действительных чисел, извлечь корень из отрицательного числа. Однако можно найти комплексные значения корня из отрицательного числа. Поэтому уравнение имеет два комплексных корня и в случае отрицательного дискриминанта. Найти эти корни можно с помощью формулы для корней квадратного уравнения.

Решим уравнение . Вычислим корни уравнения по формуле . Найдем

. Согласно формулам для корней квадратного уравнения получим

Таким образом, – корни исходного квадратного уравнения.

Задача 13.Решить уравнение .

Решение. Уравнение третьей степени , где – любые числовые коэффициенты, решают с помощью замены .

В таком случае , а . Заменяя новым неизвестным , мы получим уравнение относительно неизвестного , не содержащего квадрата этого неизвестного, т.е. уравнение вида .

Одним из способов решения подобного уравнения третьей степени – это применение формулы Кардана: где и – корни уравнения , т.е.

В заданном уравнении ; сделаем замену . Получим или . Уравнение приведено к виду , т.е. . Найдем по формулам:

;

Таким образом, ;

;

.

Сделаем обратную замену . Значит корни исходного уравнения: , , .

Для проверки необходимо воспользоваться свойствами корней кубического уравнения: ; ; .


СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

 

1. Бугров Н. С., Никольский С. М. Элементы линейной алгебры и аналитической геометрии. –М. : Наука, 1988.

2. Данко П. Е., Попов А. Г., Кожевникова Т. Н. Высшая математика в упражнениях и задачах. Часть 1. –М.: Высшая школа, 1986.

3. Игнатьева А.В., Краснощекова Т.И., Смирнов В.Ф. Курс высшей математики. – М.: Высшая школа, 1968.

4. Кузнецов Л.А. Сборник заданий по высшей математике (типовые расчеты): Учеб. Пособие для втузов. – М.: Высш. школа, 1983.

5. Курош А.Г. Курс высшей алгебры. – М.: Наука, 1986.

6. Лунгу К.Н., Письменный Д.Т., Федин С.Н., Шевченко Ю.А. Сборник задач по высшей математике. 1 курс. – 3-е изд., испр. и доп. – М.: Айрис-пресс, 2003.

7. Письменный Д.Т. Конспект лекций по высшей математике. 1 часть. – 2-е изд., – М.: Айрис-пресс, 2003.



2015-11-27 360 Обсуждений (0)
Методические указания для выполнения контрольной работы по теме линейная алгебра и аналитическая геометрия 0.00 из 5.00 0 оценок









Обсуждение в статье: Методические указания для выполнения контрольной работы по теме линейная алгебра и аналитическая геометрия

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (360)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)