ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОЕ ТИТРОВАНИЕ
КОМПЛЕКСОНОМЕТРИЯ Формула ЭДТА (трилона Б)– Na2C10H14N2O8·2H2O. 1. В каком объеме раствора содержится mг ЭДТА, если молярная концентрация раствора равна смоль/л? Решение.
где с – молярная концентрация раствора ЭДТА, моль/л; n – количество вещества ЭДТА в растворе, моль; m – физическая масса ЭДТА в растворе, г; 1000 мл/л – пересчетный коэффициент; V – искомый объем раствора, мл; M – молярная масса ЭДТА, г/моль. 2. На титрование V1мл раствора вещества В израсходовано V2мл с М раствора ЭДТА. Найти массово-объемную концентрацию вещества В (г/л) в исследуемом растворе. Решение.
где с(B) – молярная концентрация вещества В, моль/л; с – молярная концентрация раствора титранта, моль/л; V1 – объем исходного раствора вещества В, мл; V2 – объем раствора титранта, мл.
где ρ – искомая массово-объемная концентрацию вещества В в исследуемом растворе, г/л; M – молярная масса вещества В, г/моль. 3. К раствору вещества В добавили аммиачный буферный раствор и V1 мл с1М раствора ЭДТА. Избыток ЭДТА оттитровали V2мл с2М раствором второго титранта. Найти массу вещества В в исследуемом растворе. Решение.
где n – количество вещества В в растворе, моль; с1– молярная концентрация раствора ЭДТА, моль/л; V1 – объем раствора ЭДТА, мл; с2– молярная концентрация раствора второго титранта, моль/л; V2 – объем раствора второго титранта, мл;1000 мл/л – пересчетный коэффициент.
где m – искомая физическая масса вещества В в исследуемом растворе, г; M – молярная масса вещества В, г/моль. 4. Какую массу x-гидрата вещества В, содержащего ω% индифферентных примесей, следует взять для анализа, чтобы на титрование ее потребовалось V мл с М ЭДТА? Решение.
где
где
где m – искомая физическая масса x-гидрата В, содержащего индифферентные примеси, г; ω – массовая доля индифферентных примесей, %; 100% – пересчетный коэффициент. 5. Какая масса А-ионов содержится в пробе, если после прибавления V1 мл с1М раствора первого титранта избыток его был оттитрован V2мл с2М раствором ЭДТА? Решение.
где n – количество вещества А-ионов в пробе, моль; с1– молярная концентрация раствора ЭДТА, моль/л; V1 – объем раствора ЭДТА, мл; с2– молярная концентрация раствора второго титранта, моль/л; V2 – объем раствора второго титранта, мл;1000 мл/л – пересчетный коэффициент.
где m – искомая физическая масса А-ионов в пробе, г; M – молярная масса А-ионов, г/моль. 6. Растворением навески В·xH2O массой m г приготовили V мл раствора, к V0 мл которого прибавили V1 мл с1М раствора ЭДТА. На титрование избытка ЭДТА израсходовали V2 мл с2М раствора второго титранта. Вычислить массовую долю (%) вещества В в образце, определить число молекул воды xв формульной единице кристаллогидрата. Решение.
где n(В) – количество вещества В в образце, моль; с1– молярная концентрация раствора ЭДТА, моль/л; V1 – объем раствора ЭДТА, мл; с2– молярная концентрация раствора второго титранта, моль/л; V2 – объем раствора второго титранта, мл; V – объем исходного раствора образца, мл;1000 мл/л – пересчетный коэффициент; V0 – объем оттитрованного исходного раствора образца, мл.
где
где ω – искомая массовая доля вещества В в образце, %; m – физическая масса навески, г.
где 7. Из навески карбонатной породы, содержащей соли двух металлов, массой m г получили V мл раствора. На титрование V0 мл этого раствора пошло V1 мл с1М раствора трилона Б. На титрование Решение.
где n2 – количество вещества оксида второго металла в навеске карбонатной породы, моль; с,2– молярная концентрация раствора трилона Б во втором титровании, моль/л; V2 – объем раствора трилона Б во втором титровании, мл; V – объем раствора навески, мл; 1000 мл/л – пересчетный коэффициент;
где n1 – количество вещества оксида первого металла в навеске карбонатной породы, моль; с,1– молярная концентрация раствора трилона Б в первом титровании, моль/л; V1 – объем раствора трилона Б в первом титровании, мл; V0 – объем раствора навески в первом титровании, мл.
где m1 и m2 – физические массы оксидов первого и второго металлов соответственно в навеске, г; M1 и M2– молярные массы оксидов первого и второго металлов соответственно, г/моль.
где ω1 и ω2 – искомые массовые доли оксидов первого и второго металлов соответственно в карбонатной породе, %; m – физическая масса навески карбонатной породы, г. 8. На титрование пробы (V мл) анализируемого раствора, содержащего соли двух металлов, затрачено V1 мл с титром T г/мл. После полного осаждения катионов первого металла из такой же пробы раствора (V мл) избытком раствора осадителя и отфильтровывания осадка фильтрат оттитровали V2 мл такого же раствора ЭДТА. Написать уравнения всех проведенных при анализе реакций. Найти массу каждой соли (г) в пробе анализируемого раствора. Решение.
где с – молярная концентрация раствора ЭДТА, ммоль/л; T – титр раствора ЭДТА, г/мл; M – молярная масса ЭДТА, г/моль.
где m1 – искомая физическая масса соли первого металла в пробе, моль; V1 – объем раствора ЭДТА в первом титровании, мл; V2 – объем раствора ЭДТА во втором титровании, мл; M1– молярная масса соли первого металла, г/моль.
где m1 – искомая физическая масса соли второго металла в пробе, моль; M2– молярная масса соли второго металла, г/моль.
ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОЕ ТИТРОВАНИЕ 1. Рассчитать молярные массы эквивалентов вещества В в а) кислой; б) нейтральной; в) щелочной среде. Решение. Ионно-электронные уравнения полуреакций: а) MnO б) MnO в) MnO
где 2. m г x-гидрата вещества В растворили в мерной колбе на V мл. На титрование V1 мл этого раствора расходуется V2 мл раствора титранта. Найти: а) молярную концентрацию эквивалентов раствора титранта; б) титр раствора титранта; в) титр раствора титранта по другому веществу. Решение. Ионно-электронные уравнения полуреакций: MnO Fe3+ + e– = Fe2+. а) где сэк,1 – молярная концентрация эквивалентов раствора вещества В, моль/л; 1000 мл/л – пересчетный коэффициент; m – физическая масса x-гидрата вещества В, г; V – объем исходного раствора вещества В, мл; M1 – молярная масса вещества В, г/моль; M (H2O) – молярная масса воды, г/моль; x –число молекул воды в формульной единице кристаллогидрата;
где сэк,2 – искомая молярная концентрация эквивалентов вещества В, моль/л; V1 – объем исходного раствора x-гидрата вещества В, пошедший на титрование, мл; V2 – объем раствора титранта, пошедший на титрование, мл. б) где Т – искомый титр раствора титранта, г/мл; fэк,2 – фактор эквивалентности титранта; M2– молярная масса титранта, г/моль. в) где 3. Какую навеску вещества В требуется взять, чтобы на титрование ее было затрачено V мл сэк н. раствора титранта? Решение. Ионно-электронное уравнение полуреакции: 2 CO2 + 2 e– =
где m – искомая физическая масса вещества В, г; сэк – молярная концентрация эквивалентов раствора титранта, моль/л; V – объем раствора титранта, мл; M – молярная масса вещества В, г/моль; 4. m г раствора вещества В разбавили водой в мерной колбе на V мл. На титрование V1 мл этого раствора расходуется V2 мл сэк н. раствора титранта. Какова массовая доля (%) вещества В в исходном растворе? Решение. Ионно-электронное уравнение полуреакции: O2 + 2 H+ + 2 e– = H2O2.
где m(В) – физическая масса вещества В в исходном растворе, г; сэк – молярная концентрация эквивалентов раствора титранта, моль/л; V2 – объем раствора титранта, мл; V – объем разбавленного исходного раствора, мл; M – молярная масса вещества В, г/моль; fэк – фактор эквивалентности вещества В;1000 мл/л – пересчетный коэффициент; V1 – объем разбавленного исходного раствора, пошедший на титрование, мл.
где ω – искомая массовая доля вещества В в исходном растворе, %; m – физическая масса исходного раствора, г. 5. Навеска m г руды, содержащей оксид ЭOz, обработана избытком смеси растворов веществ В и C. Раствора вещества В было взято V1 мл, и на титрование его избытка израсходовано V2 мл сэкн. раствора титранта. Найти массовую долю (%) элемента Э в руде, если известно, что на титрование V3 мл такого же раствора вещества В расходуется V4 мл раствора такого же раствора титранта.
Решение. Ионно-электронное уравнение полуреакции: MnO2 + 4 H+ + 2 e– = Mn2+ + 2 H2O.
где сэк(В) – молярная концентрация эквивалентов раствора вещества В, моль/л; V4 – объем раствора титранта, пошедший на титрование V3 мл раствора вещества В, мл.
где n – количество вещества оксида ЭOz, моль; V1 – объем раствора вещества В, взятый для обработки навески руды, мл; сэк – молярная концентрация эквивалентов раствора титранта, моль/л; V2 – объем раствора титранта, пошедший на титрование избытка раствора вещества В, мл; fэк – фактор эквивалентности оксида ЭOz; 1000 мл/л – пересчетный коэффициент.
где m(Э) – физическая масса элемента Э в навеске руды, г; M – молярная масса элемента Э, г/моль.
где ω – искомая массовая доля элемента Э в руде, %; m – физическая масса навески руды, г. 6. Вычислить окислительно-восстановительный потенциал системы ОФ, H+/ВФ при [ОФ] = [ВФ] и концентрации ионов водорода, равной [H+] моль/л. Решение. Согласно уравнению Нернста при комнатной температуре для полуреакции, ионно-электронное уравнение которой ОФ + a H+ + z e– = ВФ + b H2O, где ОФ и ВФ – формулы окисленной и восстановленной форм соответственно; a, z и b – коэффициенты; справедливо следующее
где e – искомый окислительно-восстановительный потенциал системы ОФ, H+/ВФ, В; e0 – стандартный окислительно-восстановительный потенциал системы ОФ, H+/ВФ, В; [ОФ], [ВФ] и [H+] – молярные концентрации соответствующих частиц в системе, моль/л. 7. К V0 мл исходного раствора соли элемента Э прибавили V1 мл сэк,1 н. раствора осадителя, затем отделили образовавшийся осадок другой соли элемента Э. На титрование оставшегося в избытке раствора осадителя было израсходовано V2мл сэк,2 н. раствора титранта. Сколько граммов элемента Э содержится в V мл исходного раствора? Решение.
где n – количество вещества элемента Э в V0 мл исходного раствора, моль; сэк,1 – молярная концентрация эквивалентов раствора осадителя, моль/л; V1 – объем раствора осадителя, мл; сэк,2 – молярная концентрация эквивалентов раствора титранта, моль; V2 – объем раствора титранта, мл; fэк – фактор эквивалентности соли элемента Э; 1000 мл/л – пересчетный коэффициент.
где 8. Сколько граммов x-гидрата вещества В следует взять для приготовления: 1) V1 мл сэк н. раствора; 2) V2 мл раствора с титром по другому веществу T г/мл? Решение. Ионно-электронные уравнения полуреакций: 2 SO3S2– + 2 e– = 1) где m1 – искомая физическая масса x-гидрата вещества В, необходимая для приготовления первого раствора, г; сэк – молярная концентрация эквивалентов первого раствора вещества В, моль/л; V1 – объем первого раствора вещества В, мл; M1 – молярная масса вещества В, г/моль; M (H2O) – молярная масса воды, г/моль; x – число молекул воды в формульной единице кристаллогидрата; 2) m2 = TV2, где m2 – физическая масса другого вещества, г; T – титр второго раствора по другому веществу, г/мл; V2 – объем второго раствора вещества В, мл.
где nэк,2 – количество вещества эквивалентов вещества В во втором растворе, моль; M2 – молярная масса другого вещества, г/моль;
где m2 – искомая физическая масса x-гидрата вещества В, необходимая для приготовления второго раствора. 9. Вычислить молярную концентрацию эквивалентов раствора титранта, если на титрование m г вещества В израсходовано V мл этого раствора.
Решение. Ионно-электронное уравнение полуреакции: 2 H3AsO4 + 4 H+ + 4 e– = As2O3 + 5 H2O.
где сэк – искомая молярная концентрация эквивалентов раствора титранта, моль/л; 1000 мл/л – пересчетный коэффициент; M – молярная масса вещества В, г/моль; fэк – фактор эквивалентности вещества В; V – объем раствора титранта, мл. 10. К кислому раствору вещества В прибавили V1мл сэк,1 н. раствора первого титранта и выделившееся вещество оттитровали V2 мл раствора второго титранта. Найти молярную концентрацию эквивалентов раствора второго титранта. Решение.
где cэк,2 – искомая молярная концентрация эквивалентов раствора второго титранта, моль/л; cэк,1 – молярная концентрация эквивалентов раствора первого титранта, моль/л; V1 – объем раствора первого титранта, мл; V2 – объем раствора второго титранта, мл. 11. К раствору вещества В добавили избыток раствора первого титранта и выделившееся вещество оттитровали V мл сэк н. раствора второго титранта. Сколько граммов вещества В содержалось в растворе? Решение. Ионно-электронное уравнение полуреакции:
где m – искомая физическая масса вещества В, г; сэк –молярная концентрация эквивалентов раствора второго титранта, моль/л; V – объем раствора второго титранта, мл; M – молярная масса вещества В, г/моль; fэк – фактор эквивалентности вещества В; 1000 мл/л – пересчетный коэффициент. 12. К V0мл раствора вещества В прибавлено V1 мл сэк,1 н. раствора первого титранта, избыток которого затем оттитровали V2 мл сэк,2 н. раствора второго титранта. Найти массовую долю (%) вещества В в растворе, если плотность этого раствора равна ρ г/см3. Решение. Ионно-электронное уравнение полуреакции: ClO
где m – физическая масса вещества В в растворе, г; сэк,1 – молярная концентрация эквивалентов раствора первого титранта, моль/л; V1 – объем раствора первого титранта, мл; сэк,2 – молярная концентрация эквивалентов раствора второго титранта, моль; V2 – объем раствора второго титранта, мл; M – молярная масса вещества В, г/моль; fэк – фактор эквивалентности вещества В; 1000 мл/л – пересчетный коэффициент.
где ω – искомая массовая доля вещества В в растворе, %;V0 – объем раствора вещества В, мл; ρ – плотность раствора вещества В, г/см3. 13. При сожжении навески m г вещества В элемент Э переведен в оксид ЭOz, который поглотили раствором вещества А и сразу оттитровали V1 мл раствора первого титранта. Концентрация раствора первого титранта установлена с помощью с2 М раствора второго титранта, причем V2/V1 = y. Вычислить массовую долю (%) элемента Э в веществе В. Решение. Ионно-электронные уравнения полуреакций: SO
где n – количество вещества оксида ЭOz, моль; c2 – молярная концентрация эквивалентов раствора второго титранта, моль/л; y – отношение объемов растворов второго и первого титрантов; V1 – объем раствора первого титранта, мл;
где ω – искомая массовая доля элемента Э в веществе В, %;M – молярная масса элемента Э, г/моль; m – физическая масса вещества В, г. 14. Из сплава, содержащего элемент Э, последний перевели рядом операций в осадок В. Действием на этот осадок кислоты и некоторого вещества было выделено другое вещество, на титрование которого пошло V мл с М раствора титранта. Найти массу элемента Э в навеске сплава. Решение. Ионно-электронные уравнения полуреакций: PbCrO4 + 8 H+ + 3 e– = Pb2+ + Cr3+ + 4 H2O; 2 SO3S2– + 2 e– =
где n – количество вещества осадка В, моль; c – молярная концентрация э раствора титранта, моль/л; V – объем раствора титранта, мл; fэк,1 – фактор эквивалентности осадка В; 1000 мл/л – пересчетный коэффициент; fэк,2 – фактор эквивалентности титранта.
где m – искомая физическая масса элемента Э в навеске сплава, г; M – молярная масса элемента Э, г/моль. 15. К смеси, содержащей избыток иодида и иодата калия, добавили V1 мл раствора серной кислоты. Выделившийся дииод оттитровали V2 мл с М раствора титранта. Вычислить титр серной кислоты по другому веществу. Решение. Ионно-электронные уравнения полуреакций: I2 + 2 e– = 2 I–; 2 SO3S2– + 2 e– =
где n – количество вещества дииода, моль; c – молярная концентрация раствора титранта, моль/л; V – объем раствора титранта, мл; fэк,1 – фактор эквивалентности дииода; 1000 мл/л – пересчетный коэффициент; fэк,2 – фактор эквивалентности титранта. Молекулярное уравнение реакции: KIO3 + 3 H2SO4 + 5 KI = 3 I2 + 3 K2SO4 + 3 H2O. Как видно из него, количества вещества дииода и серной кислоты совпадают, откуда
где 16. К раствору, содержащему m0 г технического вещества В прилили V1 мл сэк,1 н. раствора, избыток которого оттитровали V2 см3 сэк,2 н. раствора второго титранта. Вычислите массовую долю (%) вещества В в образце. Решение. Ионно-электронное уравнение полуреакции: ClO
где m – физическая масса вещества В в образце, г; сэк,1 – молярная концентрация эквивалентов раствора первого титранта, моль/л; V1 – объем раствора первого титранта, мл; сэк,2 – молярная концентрация эквивалентов раствора второго титранта, моль; V2 – объем раствора второго титранта, см3; M – молярная масса вещества В, г/моль; fэк – фактор эквивалентности вещества В; 1000 мл/л – пересчетный коэффициент.
где ω – искомая массовая доля вещества В в образце, %;m0 – физическая масса образца, г. 17. К V мл раствора вещества В добавили V1 мл раствора первого титранта с титром T1 г/мл (избыток). Выпавший осадок отфильтровали, и избыток первого титранта в фильтрате оттитровали V2мл раствора второго титранта с титром T2 г/мл. Определите титр исходного раствора и его молярную концентрацию. Решение. Ионно-электронные уравнения полуреакций: MnO
где сэк,1 – молярная концентрация эквивалентов раствора первого титранта, ммоль/л; T1 – титр раствора первого титранта, г/мл; fэк,1 – фактор эквивалентности первого титранта; M1– молярная масса первого титранта, г/моль.
где сэк,2 – молярная концентрация эквивалентов раствора второго титранта, ммоль/л; T2 – титр раствора второго титранта, г/мл; fэк,2 – фактор эквивалентности второго титранта; M2– молярная масса второго титранта, г/моль.
где n – количество вещества В, моль; V1 – объем раствора первого титранта, мл; V2 – объем раствора второго титранта, мл; fэк – фактор эквивалентности вещества В.
где T – искомый титр исходного раствора, г/мл; M – молярная масса вещества В, г/моль; V – объем исходного раствора, мл.
где c – искомая молярная концентрация исходного раствора, моль/л; 1000 мл/л – пересчетный коэффициент.
ЭЛЕКТРОЛИЗ 1. Если годовой объем очищаемой воды равен V м3, а содержание в нем ионов Mz+ составляет ρ мг/дм3, то время, необходимое для выделения всего металла М электролизом при силе тока I А и выходе по току η%, составит ___ суток. Решение.
где m – физическая масса металла М в годовом объеме очищаемой воды, г; V – годовой объем очищаемой воды, м3; ρ – концентрация ионов Mx+ в очищаемой воде, мг/дм3. Согласно объединенному закону Фарадея
где h – выход по току, %; М – молярная масса металла М, г/моль; I – сила тока электролиза, А; t – время электролиза, с; 100% – пересчетный коэффициент; z – величина заряда катиона Mz+; F = 96 500 Кл/моль – постоянная Фарадея.
где 2. Масса металла М, полученного электролизом раствора соли этого металла, в течение tмин при силе тока I А и выходе по току η %, равна ___ г. Решение. Согласно объединенному закону Фарадея
где m – искомая физическая масса металла М, полученного электролизом раствора, г; 60 с/мин – пересчетный коэффициент; h – выход по току, %; М – молярная масса металла М, г/моль; I – сила тока электролиза, А; t – время электролиза, с; 100% – пересчетный коэффициент; z – степень окисления металла M в соли; F = 96 500 Кл/моль – постоянная Фарадея. Методы осаждения 3. Если годовой объем очищаемой воды равен V м3, а содержание в нем ионов Mz+ составляет ρ мг/дм3, то с учетом ω%-го избытка реагента, необходимого для полного осаждения, расход щелочи Решение.
где n1 – количество вещества металла М в годовом объеме очищаемой воды, моль; V – годовой объем очищаемой воды, м3; ρ – концентрация ионов Mx+ в очищаемой воде, мг/дм3; М1 – молярная масса металла М, г/моль. Краткое ионное уравнение реакции: Mz+ + z OH– = M(OH)z↓. Уравнение диссоциации щелочи:
Из них видно, что n(OH–) = xn2 = zn1, откуда где n(OH–) – количество вещества ионов OH–, необходимое для осаждения, моль; n2 – количество вещества щелочи
где m2 – искомый расход щелочи, необходимый для полного осаждения, кг в год; М2 – молярная масса щелочи, г/моль; ω – массовая доля избытка, %; 100% – пересчетный коэффициент; 1000 г/кг – пересчетный коэффициент. pH 4. Если суточный объем очищаемой воды равен V м3, значение водородного показателя исходного раствора равно pH, то с учетом ω%-го содержания действующего вещества в пересчете на карбонат кальция в известняковой муке ее расход составит __ кг в сутки. Решение. n1 = 1000V·10–pH =V·103–pH, где n1 – количество вещества ионов H+ в суточном объеме очищаемой воды, моль; 1000 л/м3 – пересчетный коэффициент; V – суточный объем очищаемой воды, м3;pH – водородный показатель исходного раствора. Краткое ионное уравнение реакции: 2 H+ + CaCO3 = Ca2+ + CO2↑ + H2O. Из него видно, что
где n2 – необходимое для нейтрализации количество вещества карбоната кальция, моль.
где m2 – искомый расход известняковой муки, кг в сутки; М2 – молярная масса карбоната кальция, г/моль; 10 г/(кг·%) – пересчетный коэффициент; ω – массовая доля карбоната кальция в известняковой муке, %. 5. Сколько мл cэкн. раствора слабой одноосновной кислоты нужно добавить к V2мл c М раствора натриевой соли этой кислоты, чтобы получить раствор с водородным показателем pH? Решение. рКa(CH3COOH) = 4,74.
где nc – количество вещества соли, ммоль; c – молярная концентрация раствора соли, моль/л; V2 – объем раствора соли, мл.
где pH – водородный показатель буферного раствора; рКa – показатель константы диссоциации кислоты; nк – количество вещества кислоты, ммоль.
где V1 – искомый объем раствора кислоты, мл; сэк – молярная концентрация эквивалентов раствора кислоты, моль/л. 6. Найти величину буферной емкости буферного раствора, если после добавления V2мл cэкн. раствора щелочи к V1мл этого раствора pH последнего увеличивается с pH1до pH2. Решение.
где 7. Определить буферную емкость системы, если для изменения ее pH от pH1до pH2 добавили к V1 мл системы V2мл cэкн. сильной кислоты. Решение.
где 8. Активная кислотность биологической жидкости равна [H+] моль/л. Найти pH жидкости. Решение. pH = –lg[H+], где pH – искомое значение водородного показателя; [H+] – активная кислотность, моль/л. 9. Определить концентрации гидроксид-ионов в крови человека при t
Популярное: Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (436)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |