Мегаобучалка Главная | О нас | Обратная связь


Приемники полного излучения



2015-11-27 1085 Обсуждений (0)
Приемники полного излучения 0.00 из 5.00 0 оценок




 

Приемники полного излучения отличаются тем, что их спектральная чувствительность постоянна в широком диапазоне длин волн от дальней инфракрасной области до ближней ультрафиолетовой. Их чувствительность не зависит от длины волны. Для увеличения поглощательной способности чувствительные поверхности приемников окрашивают в черный цвет. В длинноволновой области (начиная с 20 мкм) чувствительные поверхности приемника выполняются в виде незачерненных металлических слоев определенной толщины. Для уменьшения теплоотвода в среду приемник излучения помещают в вакуумированные или газонаполненные корпуса. Применяются следующие типы приемников полного излучения: термобатареи, болометры, тепловые быстродействующие индикаторы, пироэлектрические кристаллы и др.

Термобатареи выполняются на основе термопар, соединенных последовательно (до 20 термопар). Их горячие спаи располагаются на узком участке поверхности, на который фокусируется излучение. Термопары выполняются в виде тонкой фольги, проволоки или тонкой пленки, полученной методом испарения в вакууме.

Болометры - это термометры сопротивления, изготовленные либо из фольги проводящих материалов с температурным коэффициентом сопротивления aR »10-3 К-1, либо из полупроводников (термисторов) с aR »10-3 К-1. Чувствительная поверхность болометра из фольги для увеличения поглощающей способности зачерняется.

Схемы включения болометров требуют наличия источника питания.

Тепловые быстродействующие индикаторы выполняются в виде тонкослойной термопары или болометра, в которых активный слой имеет хороший тепловой контакт с основанием. Это дает возможность достичь сравнительно высокого быстродействия. Поэтому они используются в первую очередь для идентификации мощных сигналов, например, для регистрации высокочастотного модулированного лазерного излучения.

Пироэлектрические приемники излучения - это кристаллы с определенным видом симметрии, в которых в зависимости от изменения температуры проявляется эффект спонтанной поляризации. Поэтому данные приемники излучения не требуют дополнительных источников питания.

Сильнее всего пироэлектрические свойства проявляются в таких материалах, как монокристаллы и керамика титаната бария, монокристаллы триглицинсульфата и ниобата бария-стронция.

 

Фотоэлектрические приемники излучения

 

Спектральная чувствительность фотоэлектрических приемников излучения неодинакова для различных длин волн и наиболее велика в видимой и ближней инфракрасной областях спектра. По сравнению с приемниками полного излучения фотоэлектрические обладают большим быстродействием и имеют более протяженные светочувствительные поверхности.

Такие приемники могут быть с внутренним фотоэффектом (фотоэлементы, фотодиоды, фототранзисторы, фоторезисторы) и с внешним фотоэффектом (фотоэлементы с внешним фотоэффектом, фотоумножители).

Фотодиоды - это структура, в которой при поглощении фотона образуется пара электрон - дырка. Возникающая разность потенциалов является мерой потока излучения.

Фототранзисторы представляют собой структуру, базовая область которой может облучаться светом. Фототранзистор служит, таким образом, одновременно и усилителем фототока, поэтому по сравнению с фотодиодом он имеет на порядок большую чувствительность, однако меньшее быстродействие.

Фоторезисторы - это полупроводниковые элементы, меняющие свою электропроводность под действием излучения. Благодаря большой допускаемой мощности рассеяния с помощью фоторезисторов можно коммутировать большие токи, достаточные для переключения электромагнитных реле.

Фотоэлементы с внешним фотоэффектом выполняются обычно в виде стеклянного вакуумированного или газонаполненного баллона, внутри которого размещаются анод и катод в виде фоточувствительного слоя, нанесенного на внутреннюю поверхность баллона.

При освещении фотокатода освобождаются электроны, и при подключении анодного напряжения от внешнего источника возникает фототок, пропорциональный потоку излучения.

Фотоэлементы с внешним фотоэффектом обладают высоким внутренним сопротивлением и работают при больших разностях потенциалов, поэтому их выходные сигналы можно использовать непосредственно для управления исполнительными устройствами.

Фотоэлектронный умножитель (ФЭУ) - это устройство, содержащее в одном баллоне вакуумный фотоэлемент и вторичный электронный усилитель. Поток излучения освобождает из фотокатода электроны, которые разгоняются в электрическом поле и фокусируются на эмиттеры (диноды). При попадании каждого ускоренного электрона на динод освобождается от 5 до 10 новых электронов. Фотоумножители могут иметь 9…14 динодов и увеличивать общее число фотоэлектронов в 109 раз.

 

Пирометры

Все пирометры подразделяются на: пирометры полного излучения (пирометры с преломляющей и отражающей оптическими системами), квазимонохроматические пирометры (пирометры с исчезающей нитью и с оптическим клином), пирометры спектрального распределения (пирометры сравнения и спектрального отношения).

В пирометрах полного излучения используется не менее 90 % суммарного потока излучения источника. При измерении температуры реального тела пирометр полного излучения показывает не действительную, а так называемую радиационную температуру тела. При известном суммарном коэффициенте черноты тела возможен пересчет с радиационной температуры тела на его действительную температуру.

Недостатком пирометров полного излучения является то, что для определения действительной температуры необходимо знать коэффициенты черноты, а точность показаний пирометра зависит не только от стабильности коэффициента черноты, но и от поглощения излучения окружающей средой и оптической системой пирометра. Пирометры полного излучения удобно использовать поэтому не при измерении действительной температуры, а при измерениях разностей температур в неизменных условиях наблюдения.

В пирометрах с преломляющей оптической системой (рисунок 4а) излучение от объекта 1 через линзовый объектив 2 и диафрагму 3 поступает на приемник полного излучения 4. Для наводки на объект измерения служит окуляр 6 с дымчатым светофильтром 5 и диафрагмой 7. Отсчетным устройством является милливольтметр 8.

 
 

 


а)б)

а – с преломляющейся оптической системой;

б – с отражательной оптической системой

Рисунок 4 Схемы пирометров полного излучения

В пирометрах с отражающей оптической системой (рисунок 4б) излучение от объекта 1 попадает на приемник излучения 5 после прохождения через защитную полиэтиленовую пленку 2, диафрагму 3 и вогнутое зеркало 4. Для наводки на объект излучения служит зрительная труба 6, отсчет показаний производится по шкале милливольтметра 7. Полиэтиленовая пленка прозрачна для инфракрасного излучения и служит для защиты оптической системы пирометра от загрязнения и потоков воздуха.

Квазимонохроматические пирометры частичного излучения работают в узком диапазоне длин волн. При измерении устанавливается связь между действительной и яркостной температурой

В пирометрах с исчезающей нитью (рисунок 5а) в задней фокальной плоскости объектива 2 размещается нить лампы накаливания 3. Оператор 7 через окуляр 4, диафрагму 5 и фильтр 6 видит изображение нити лампы на фоне объекта 1. Наблюдение ведется в монохроматическом свете (обычно l = 0,65 мкм), создаваемом фильтром из красного стекла. С помощью реостата силу тока через лампу накаливания изменяют до тех пор, пока спектральные интенсивности излучения нити лампы и объекта не станут равными друг другу. В этот момент изображение нити исчезает на фоне объекта. Миллиамперметр 8 можно проградуировать в градусах температуры.

Пирометр с оптическим круговым клином (рисунок 5б) является модификацией вышеописанного пирометра. В нем яркостную температуру нити лампы накаливания 3 поддерживают постоянной, а уравнивание яркостей осуществляется перемещением оптического клина 2, пропускающего больше или меньше света от объекта 1. По положению клина можно судить о яркостной температуре объекта.

 
 

 

 


а)б)

а –с исчезающей нитью; бс оптическим клином

Рисунок 5 Схемы квазихроматических пирометров

(частичного излучения)

Пирометры спектрального распределения основаны на использовании зависимости интенсивности спектрального излучения нагретых тел от температуры и длины волны излучения. Мерой температуры может быть цвет излучающего объекта или отношение спектральных интенсивностей на двух различных длинах волн.

Поскольку в большинстве случаев характер зависимости спектральной интенсивности излучения от длины волны приблизительно одинаков для черного тела и реальных излучателей, то и различие между цветовой и действительной температурами невелико.

В пирометрах сравнения (рисунок 6а) отношение спектральных интенсивностей оценивается субъективно по цветовому ощущению, создаваемому смесью двух монохроматических пучков. Излучение от объекта 1 через объектив 2, нейтральный оптический клин 3 и двойной светофильтр 4 направляется к фотометрическому кубику 5. Двойной светофильтр выполнен в виде двух клиньев (красного и зеленого), относительным перемещением которых можно изменять соотношение между интенсивностями красного и зеленого цветов. На фотометрический кубик поступает также излучение от лампы накаливания 12 через матовое стекло 11, красный и зеленый светофильтры 10 и объектив 9. Через окуляр 6 и диафрагму 7 наблюдатель 8 видит два участка, соответствующих излучению от объекта и лампы, окрашенных смесью зеленого и красного цветов с различным соотношением их интенсивностей. Взаимным смещением оптических клиньев двойного светофильтра уравнивают соотношение интенсивностей красного и зеленого цветов излучения объекта и излучения лампы накаливания. Для уравновешивания соотношения цветов необходимо равенство яркостей излучения объекта и лампы. Этого добиваются изменением положения нейтрального оптического клина 3. После уравновешивания положения нейтрального клина определяют яркостную температуру; положение одного из клиньев двойного светофильтра 4 определяет цветовую температуру объекта.

Оператор, работающий с пирометром сравнения, должен, конечно, обладать хорошим цветоощущением. В пирометрах спектрального отношения (рисунок 6б) вводится модуляция светового потока. Световой поток, пройдя от измеряемого объекта 1 через объектив 2, прерывается обтюратором с двумя светофильтрами 4, пропускающими излучение на двух длинах волн (l1 и l2), к фотоэлементу 5. Переменная составляющая выходного сигнала фотоэлемента усиливается усилителем 6 и подается на реверсивный двигатель 7, который перемещает уравновешивающий фильтр 3 до тех пор, пока не уравняются интенсивности излучения на обеих длинах волн. В положении равновесия перемещение фильтра является мерой измеряемой температуры.

 

 


Основное преимущество пирометров спектрального отношения заключается в независимости их показаний от излучательной способности объекта, а также от наличия дыма, пыли и испарений в пространстве между объектом и пирометром.

 



2015-11-27 1085 Обсуждений (0)
Приемники полного излучения 0.00 из 5.00 0 оценок









Обсуждение в статье: Приемники полного излучения

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1085)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)