Указания к проведению и порядок работы
Введение Сегодня предприятиям надо обеспечить соответствие выпускаемой продукции требованиям международных стандартов ISO, что невозможно без использования CALS-технологий. В настоящее время в РФ всё больше внимания уделяется интеграции информационных технологий практически во все отрасли машиностроения, идёт активное внедрение совершенно новых автоматизированных средств информационной поддержки изделий на всех этапах жизненного цикла. Особое внимание уделяется новым перспективным направлениям разработки и управления технологическими процессами (ТП) механообработки с использованием нейросетевого моделирования. Ниже представлена сравнительная таблица обзора характеристик методов управления с относительной оценкой основных параметров (Таблица 1).
В последние годы резко повысился интерес к таким научным направлениям как идентификация, нейроуправление, нейропрогнозирование с использованием нечеткой логики. Цели и задачи работы. В технике довольно часто возникают ситуации, когда невозможно получить исчерпывающую информацию для построения точной математической модели объекта управления. К неточной информации можно отнести большое разнообразие возмущающих воздействий, изменяемых в процессе работы станка; изменение таких параметров окружающей среды как температура, трение в исполнительных механизмах и т.д. Нейроуправление значительно улучшает характеристики технологического оборудования. Системы управления станками с ЧПУ с нечеткой логикой обеспечивают более высокие показатели качества, обладают лучшими статическими и динамическими характеристиками и поэтому являются перспективным направлением при создании новых современных технологий в области нейроуправления. Преимуществами НС перед традиционными системами управления является: 1. НС могут обучаться любым функциям, важен только объем предоставленных данных и выбор правильной нейронной модели. Таким образом НС позволяют избежать использования сложного математического аппарата; 2. Использование нелинейных функций активации в нейронных сетях позволяет реализовать задачи с существенными нелинейностями; 3. НС являются самообучаемыми системами. Это означает возможность осуществлять управление в условиях существенных нелинейностей; 4. Высокая степень параллельности НС обеспечивает высокую производительность вычислений; 5. Архитектура параллельной обработки позволяет НС функционировать даже при повреждении отдельных элементов сети. Из этого следует, что нейронные сети имеют большие перспективы в области управления сложным технологическим оборудованием. Искусственный нейрон является составной частью нейронной сети. На рис.1 показана его структура. Он состоит из элементов трех типов: умножителей (синапсов), сумматора и нелинейного преобразователя.
Рис. 1. Структура искусственного нейрона
Нейрон в целом реализует скалярную функцию векторного аргумента. Математическая модель нейрона:
где
Указания к проведению и порядок работы. На основании полученных данных обработки партии гладкого вала в течении смены составить таблицу данных («банк данных»), указать требуемые параметры для формирования пакета входных данных НС. Пример: Пластинка: CNMG 120408-M3 ТР3000 Резец: POLNR 2525M12 N=630 об/мин Подача 0,3 мм/об. Таблица результатов измерений
Рис. 2. Таблица результатов эксперимента (относительные отклонения) Для оценки числа нейронов в многослойной сети можно воспользоваться формулой:
Оценив необходимое число весов, можно рассчитать число нейронов в скрытых слоях для двухслойной сети:
среднее арифметическое значение истинного результата измерений. Подставляя вместо <x>≡
Выводы На основании полученных данных можно утверждать о возможности применения прикладного пакета нейросетевого моделирования для решения задачи коррекции управляющей программы в процессе обработки. Параметры, которые будет использовать сеть в качестве входных данных, а также построить теоретическую модель функции активации нейрона с указанием возможного порога срабатывания и выходные данные сети: а именно, по какому образцу возможно «обучение» сети и какие параметры можем принять в качестве ошибки обучения.
Лабораторная работа №2. «Модели оптимизации в многофакторных экспериментах». Введение Научное исследование – это такое систематическое и целенаправленное изучение объектов, в котором используются методы и средства науки и которое завершается формулированием знаний об изучаемых объектах (гипотез, теорий, законов, методов проведения экспериментов, методов расчета и др.). Объектом научного исследования является материальная или идеальная система. Предметом научного исследования является структура системы, закономерности взаимодействия элементов внутри системы или вне ее, закономерности развития и т.п. Цель научных исследований (объектов, процессов или явлений) – всестороннее достоверное получение, изучение и формулирование новых знаний, которые будут использованы для решения технических, экономических, социальных, гуманитарных и других задач. При разработке технологических процессов используют методы структурной и параметрической оптимизации по разным критериям, которые можно объединить в две группы: 1) экономические критерии (минимальная технологическая себестоимость, наименьшие приведенные затраты, наибольшая прибыль и др.); 2) критерии технического уровня (максимальный уровень автоматизации, максимальная производительность, наибольший коэффициент использования материалов, наибольший коэффициент загрузки оборудования и др.). Структура элементов таких моделей описывается ориентированным графиком, не имеющим замкнутых циклов. Модель содержит большое число вариантов техпроцесса, в которых строго сохраняется порядок следования элементов, соответствующий технологическим операциям. Цели и задачи работы. Основной целью экстремальных экспериментов является нахождение наилучших (оптимальных) решений по выбранному критерию (параметру оптимизации). Для этого задается некоторый критерий оптимизации в виде целевой функции y, зависящий от управляемых параметров (факторов варьирования)
Задача оптимизации сводится к отыскиванию таких значений параметров Если бы поверхность отклика можно было описать в аналитической форме в виде приведенной функции, то координаты точки экстремума
Решением системы является экстремальная точка (или «стационарная точка»), в которой градиент функции у обращается в нуль
где Однако в большинстве случаев экспериментальных исследований аналитическая функция «у» неизвестна. Исследователь имеет возможность только экспериментально получить значение отклика при некоторой комбинации варьируемых факторов
Таким образом, задача оптимизации может быть решена двумя методами. 1) Каким-либо способом строиться математическая модель и задача решается аналитически или численным способом. 2) Поиск экстремальной («стационарной») точки в факторном пространстве Известны несколько методов экспериментального поиска оптимума, различающихся способом определения направления движения и организацией самого движения. В лабораторной работе рассмотрим наиболее широко применяемые экспериментальные методы и сравним результаты применённых моделей оптимизации.
Популярное: Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (397)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |